Компьютер. Радиоэлектроника. Блоки питания. Справочники. Источники питания. Радиосвязь

Особенности рсбн различных диапазонов радиоволн. Тема: Распростарнение радиоволн. Распространение земной волны в диапазоне УКВ



реферат по дисциплине Коммуникации, связь, цифровые приборы и радиоэлектроника на тему: Особенности распространения радиоволн; понятие и виды, классификация и структура, 2015-2016, 2017 год.

  • Содержание
ВВЕДЕНИЕ1. Понятие, классификация радиоволн2. Особенности распространения радиоволн3. Факторы, влияющие на дальность и качество радиоволнЗаключениеЛитератураВВЕДЕНИЕ В системах передачи информации с помощью радиотехнических и радиоэлектронных приборов различают три звена: передающее устройство, среда, в которой распространяются радиоволны, и приемное устройство.Понятно, что если радиоэлектронная система включает в свой состав тракт распространения, то безупречная и надежная работа системы в целом в значительной мере определяется также условиями распространения радиоволн на участке, разделяющем передающую и приемную антенны.В процессе распространения волны подвергаются ослаблению и искажению. Кроме того, на приемную антенну воздействуют разного рода помехи как естественного, так и искусственного происхождения. Для обеспечения надежной передачи информации необходимо, чтобы поле сигнала, во-первых, в определенное число раз превышало уровень помех (в зависимости от условий работы канала связи и требований к надежности). Во-вторых, сигналы не должны подвергаться чрезмерным искажениям, неизбежно возникающим в процессе распространения. Искажения должны находиться в пределах допустимых норм.

Передача информации может нарушиться либо при значительном снижении уровня сигнала (который при всём этом уже не будет выделяться на фоне помех), либо при сильном искажении формы сигнала (его растягивании, дроблении и т. д.).

Потеря трассы сигнала, по сути, является уменьшением плотности мощности электромагнитной волны или сигнала, когда она распространяется через окружающую среду, в которой она движется. Существует много причин потери радиоканала, которые могут произойти.

Потеря свободного пространства: потеря свободного места происходит, когда сигнал проходит через пространство без каких-либо других эффектов, ослабляющих сигнал, который он все равно будет уменьшаться по мере его распространения. Это можно рассматривать как сигнал радиосвязи, распространяющийся как постоянно растущая сфера. Поскольку сигнал должен охватывать более широкую область, сохранение энергии говорит нам о том, что энергия в любой данной области будет уменьшаться по мере увеличения площади. Потери абсорбции: Потери поглощения возникают, если радиосигнал переходит в среду, которая не полностью прозрачна для радиосигналов. Дифракция: Дифракционные потери возникают, когда объект появляется на пути. Сигнал может дифрагировать вокруг объекта, но потери происходят. Потеря выше, чем больше округлен объект. Радиосигналы имеют тенденцию лучше дифракцироваться вокруг острых краев. Эти сигналы могут добавлять или вычитать друг от друга в зависимости от относительных фаз сигналов. Если приемник перемещен, сценарий изменится, и общий принятый сигнал будет отличаться от положения. Мобильные приемники будут подвержены этому эффекту, который известен как затухание Рэлея. Ландшафт: рельеф, по которому происходит передача сигналов, оказывает значительное влияние на сигнал. Очевидно, что холмы, которые препятствуют пути, значительно ослабят сигнал, что часто делает прием невозможным. Кроме того, на низких частотах состав земли будет иметь заметный эффект. Например, в полосе длинной волны обнаружено, что сигналы лучше всего движутся по более проводящей местности, например. морские пути или участки, болотистые или влажные. Сухая песчаная местность дает более высокие уровни затухания. Здания и растительность: для мобильных применений, зданий и других препятствий, включая растительность, имеют заметный эффект. Мало того, что здания будут отражать радиосигналы, они также поглотят их. Сотовая связь часто значительно ухудшается внутри зданий. Деревья и листва могут ослаблять радиосигналы, особенно когда они мокрые. Атмосфера: Атмосфера может влиять на радиосигналы. Это можно сравнить с световым сигналом, проходящим через прозрачное стекло. . Эти причины представляют собой некоторые из основных элементов, которые вызывают потерю сигнала в любой радиосистеме.

Свободно распространяющиеся радиоволны находят в современной технике обширные и многообразные применения, а именно: в системах связи, в радиолокационных устройствах, телеметрии, системах управления, в радионавигации и во многих других случаях. Их основное преимущество заключается в том, что когда связь устанавливается между фиксированными (наземными) пунктами, то нет необходимости сооружать между ними, соединительную или направляющую систему. Радиоволны являются единственным и естественным средством осуществления связи с передвигающимися объектами (автомобилями, кораблями, самолетами, космическими кораблями).

Одна из ключевых причин для понимания различных элементов, влияющих на потерю тракта радиосигнала, заключается в том, чтобы иметь возможность прогнозировать потерю для данного пути или прогнозировать охват, который может быть достигнут для конкретной базовой станции, станции вещания и т.д.

Хотя предсказание или оценка могут быть достаточно точными для сценариев свободного пространства, для реальных наземных приложений это непросто, так как есть много факторов, которые необходимо учитывать, и не всегда можно получить точные оценки эффектов, которые они будут иметь.

1. Понятие, классификация радиоволн Радиоволнами условно называют электромагнитные волны в диапазоне от 100000 м до примерно 0,1 мм, что, применяя известное соотношение между длиной волны и частотой соответствует интервалу частот от 3000 гц до 3*10 12 гц.Используемые в технике связи волны принято подразделять по десятичному признаку на диапазоны: сверхдлинных волн (СДВ) от 10 5 до 10 4 м, длинных волн (ДВ) от 10 4 до 10 3 м, средних волн (СВ) от 10 3 до 100 м, коротких волн (КВ) от 100 до 10 м, метровых волн (МВ) от 10 до 1 м, дециметровых волн (ДМВ) от 1 до 0,1 м, сантиметровых волн (СМВ) от 10 до 1 см, миллиметровых волн (ММВ) от 1 см до 1 мм и субмиллиметровых волн (СММВ) от 1 до 0,1 мм. Волны короче 0,1 мм относят к диапазону оптических волн.Диапазоны МВ, ДМВ и СМВ часто называют ультракороткими волнами. Сверхвысокими частотами называют частоты диапазонов ДМВ и СМВ.Скорость распространения радиоволн в свободном пространстве составляет 3 * 10 8 м/с.Дифракция радиоволн - явление, состоящее в том, что радиоволны способны огибать препятствия. Дифракция проявляется тем сильнее, чем больше длина волны по сравнению с размерами препятствий. Например, километровые и гектометровые волны огибают горы, холмы, большие городские здания и т. д. В то же время волны микроволновых диапазонов не огибают эти препятствия, образуя непосредственно за ними зоны радиотени. Благодаря явлению дифракции волны огибают неровности земной поверхности, распространяясь в виде поверхностной (земной) волны на расстояния, превышающие дальность прямой видимости.Рефракция радиоволн - явление преломления радиоволн в атмосфере вследствие уменьшения плотности воздуха с высотой, приводящее к увеличению дальности распространения поверхностной радиоволны. При среднем (нормальном) состоянии атмосферы (температура воздуха на уровне моря 15°С, снижение температуры с высотой-0,65°С на 100 м, уменьшение давления - дальность распространения поверхностной радиоволны увеличивается на 15 ... 20% по сравнению с дальностью геометрической видимости (случай нормальной атмосферной рефракции). При некоторых особых состояниях атмосферы, когда плотность воздуха уменьшается с высотой быстрее, чем в нормальной атмосфере, может образоваться атмосферный волновод (суперрефракция), по которому поверхностная волна распространяется в несколько раз дальше, чем при нормальной рефракции.Интерференция радиоволн - явление взаимного наложения радиоволн, приходящих в точку приема по разным путям. Если амплитуды радиоволн, приходящих по двум путям различной длины, одинаковы, то при совпадающих фазах результирующее поле удваивается, при противоположных фазах равно нулю. Фок В. А. Дифракция радиоволн вокруг земной поверхности. - М.: Изд-во АН СССР, 1979.С явлением интерференции радиоволн связаны замирания сигнала, а также появление повторных контуров на телевизионном изображении.Радиоволны принято также классифицировать по способу распространения в свободном пространстве и вокруг земного шара.Волны, распространяющиеся в свободном пространстве (космосе) от одного космического объекта к другому, носят название прямых или свободно распространяющихся. К этой же категории можно в некоторых случаях отнести волны, распространяющиеся между наземной станцией и космическим объектом, а именно в те случаях, когда влиянием относительно тонкого слоя атмосферы можно пренебречь. Долуханов М. П. Распространение радиоволн. - М.: Советское «Радио», 1972.Радиосвязь может осуществляться с помощью поверхностных и пространственных радиоволн.Волны, распространяющиеся вдоль сферической поверхности Земли и частично огибающие ее вследствие явления дифракции, получили название земных или поверхностных. Способность волн огибать встречаемые препятствия и дифрагировать вокруг них, определяется соотношением между длиной волны и размерами препятствий. Чем ниже частота сигнала, тем больше дальность распространения поверхностной волны. Чем короче волны, тем слабее проявляется дифракция. По этой причине УКВ очень слабо дифрагирует вокруг поверхности земного шара и дальность их распространения в первом приближении определяется расстоянием прямой видимости.Ультракороткие волны, распространяющиеся за счет рассеяния на неоднородностях тропосферы на расстояние до 1000 км, получили название тропосферных.Наконец, волны длиннее 10 м, распространяющиеся вокруг земного шара на сколь угодно большие расстояния за счет однократного и многократного отражения от ионосферы (т. е. ионизированной оболочки атмосферы), называются ионосферными или пространственными.Слои ионосферы: слой D с наиболее слабой электронной концентрацией, высота 60 ... 80 км (существует только днем), слой Е со средней электронной концентрацией, высота 90 ... 150 км, слой F с наиболее высокой электронной концентрацией, высота 190 ... 500 км; летом расщепляется на два слоя с различной электронной концентрацией: F 1 (высота 190 ... 230 км) и F 2 (высота 230 ... 500 км).2. Особенности распространения радиоволн Мириаметровые и километровые волны Диапазоны частот от 3 до 30 кГц - очень низкие частоты (ОНЧ) и от 30 до 300 кГц - низкие частоты (НЧ).

Поверхностная волна обладает ярко выраженной способностью к дифракции и обеспечивает устойчивую надежную радиосвязь на больших расстояниях при использовании сложных и дорогих антенно-мачтовых сооружений. На расстоянии до 400 км распространение происходит только с помощью поверхностной волны, до 3000 км - с помощью поверхностной и пространственной волн, свыше 3000 км - только с помощью пространственной волны. Используются для радиовещания и радионавигации. Основной источник помех -атмосферные разряды. Диапазон мириаметровых волн используется, как правило, для радиосвязи под водой.

Несмотря на это, существуют инструменты беспроводной съемки и программы прогнозирования радиопокрытия, которые доступны для прогнозирования потери радиосигнала и оценки покрытия. Для этого используются различные методы. Этот расчет очень прост в реализации, но реальные наземные вычисления потерь сигнала трассируются гораздо более активно.

Распространение ультракоротких волн

Большинство прогнозов потери пути производятся с использованием методов, описанных ниже. Статистические методы прогнозирования потери тракта сигнала зависят от измеренных и усредненных потерь для типичных типов радиолиний. Эти цифры вводятся в модель прогнозирования, которая способна вычислять цифры, основанные на данных. Эти методы должны учитывать все элементы в данной области и, хотя они, как правило, дают более точные результаты, требуют значительных дополнительных данных и вычислительной мощности. Ввиду их сложности они, как правило, используются для коротких ссылок, где количество требуемых данных попадает в допустимые пределы.

  • Статистические методы.
  • В зависимости от приложения могут использоваться различные модели.
Эти инструменты беспроводной съемки и пакеты программного обеспечения для покрытия радиосвязи расширяются в своих возможностях.

Гектометровые волны. Диапазон частот от 300 кГц до 3 МГц - средние частоты (СЧ). Способность поверхностной волны к дифракции выражена слабее, чем на километровых волнах. В дневное время гектометровые волны распространяются только в виде поверхностной волны на расстояние до 300 ... 500 км над сушей и до 800 ... 1000 км над морем, а ночью-с виде поверхностных и пространственных волн на расстояние до 4000 км. Используются для служебной и любительской связи, а также для радиовещания.

Однако по-прежнему необходимо хорошо понимать распространение радиоволн, чтобы можно было ввести правильные цифры и результаты были удовлетворительно интерпретированы. Сферичности Земли. Представлены три случая. Прямой интервал видимости. Радиопропагация прямой видимости на холмах. Радиопропагация по краям ножей.

Распространение земной волны в диапазоне УКВ

Его физические характеристики оказывают значительное влияние на радиоволны. Среди этих характеристик мы имеем показатель преломления, который изменяется с высотой и который является наиболее прямым ответственным за кривизну, испытываемую передаваемой волной, что приводит к разным типам тропосферной рефракции.

Декаметровые (короткие) волны. Диапазон частот от 3 до 30 МГц -высокие частоты (ВЧ). Основной диапазон, используемый для любительской и профессиональной радиосвязи на расстояния в несколько тысяч и десятков тысяч километров. Радиосвязь на декаметровых волнах проводится только с помощью пространственных волн, так как поверхностные волны в этом диапазоне имеют слабую способность к дифракции и кривизну земного шара практически не огибают. Обычно в дневное время для связи применяют «дневные» волны (от 10 до 20 м), а ночью, когда ионизация становится более слабой, - «ночные» волны (от 35 до 70 м). Связь на декаметровых волнах часто нарушается из-за глубоких замираний сигнала. Причины замираний - изменения разности фаз лучей, пришедших в точку приема по разным путям (интерференционные замирания с периодом несколько секунд); поворот плоскости поляризации вследствие двойного лучепреломления в ионосфере (поляризационные замирания); повышенное затухание в слое Д в периоды максимума солнечной активности вплоть до полного поглощения пространственной волны (длительность замирания до 60 мин); исчезновение слоя Р 2 в высоких широтах и снижение МПЧ в средних широтах из-за корпускулярного излучения Солнца (внешние признаки появление полярных слияний, длительность нарушений связи несколько дней). Меры борьбы с интерференционными и поляризационными замираниями -прием на разнесенные антенны и на разнесенных частотах, применение глубокой АРУ в приемниках, а при замираниях из-за корпускулярного излучения Солнца переход на более низкие частоты.

Эти антецеденты приводят к различным аспектам, таким как: увеличение эффективного радиуса Земли. Случаи, когда траектория электромагнитных волн достигает расстояний, намного превосходят предсказанные теоретически. Эти антецеденты уступают место различным аспектам, таким как: наличие суперпреломления, которое является одной из форм тропосферной рефракции, в которой в особых и случайных условиях, в зависимости от метеорологических условий, тропосферных протоков. Каналы производят ряд последовательных отражений на земной поверхности, которые простираются на довольно большие расстояния.

При связи на декаметровых волнах возможно появление «зоны молчания» в виде кольцевой области, которая заключена между радиусом действия поверхностной волны и расстоянием, на котором появляется отраженная от ионосферы пространственная волна. Качество дальней связи на верхнем уровне диапазона частот может ухудшаться также из-за того, что в точку приема кроме основного сигнала приходит с большим временным сдвигом (до 0,1 с) второй сигнал, прошедший более длинный путь по дуге большого круга (кругосветное эхо).

Условие распространения электромагнитной волны внутри трубопровода заключается в том, что его длина волны «?» Не превышает одного? критики, известной как? разреза. Дисперсия молекулами и их столкновения. Однако более короткие волны страдают от ослабления, что может быть значительным. Земельный мобильный телефон в основном состоит из базовой станции, с которой связана мобильная станция. Базовая станция может обслуживать различные мобильные станции или мобильные системы, которые работают на разных частотах для обслуживания одной системы.

Микроволновые диапазоны. Включают в себя метровые волны (очень высокие частоты, ОВЧ, 30 ... 300 МГц), дециметровые волны (ультравысокие частоты, УВЧ, 300 ... 3000 МГц), сантиметровые волны (сверхвысокие частоты, СВЧ, 3 ... 30 ГГц), миллиметровые волны (крайне высокие частоты, КВЧ, 30 ... 300 ГГц), децимиллиметровые волны (300 ... 3000 ГГц). Радиоволны микроволновых диапазонов распространяются только с помощью поверхностной волны, так как в этих диапазонах пространственные волны от ионосферы не отражаются. Поскольку дифракция поверхностной волны в этих диапазонах почти не проявляется, распространение радиоволн происходит только в пределах прямой видимости.

Особенности распространения радиоволн метрового -миллиметрового диапазонов

Классификация наземных мобильных систем радиосвязи В зависимости от того, как работают мобильные системы радиосвязи, могут быть охарактеризованы следующие режимы эксплуатации частоты: одночастотные и двухчастотные симплексные системы Двухчастотные дуплексные базовые системы Две дуплексные системы частоты.

В этих системах как базовая станция, так и мобильная передача передаются с общей частотой. Он передается и принимается на разных частотах. Дуплексная система двух частот. В этих системах обе станции, базовые и мобильные, могут передавать на одной частоте и одновременно принимать другую.

На метровых волнах благодаря незначительной дифракции дальность приема может быть несколько больше, чем дальность прямой видимости, однако в зоне дифракции (зона полутени и тени) напряженность поля убывает очень быстро, прием телевизионных передач становится нестабильным и неустойчивым. На метровых волнах наблюдаются отдельные случаи дальнего и сверхдальнего приема телевизионных передач вследствие рассеяния радиоволн на неоднородностях атмосферы и отражения радиоволн от областей ионосферы с повышенной ионизацией.

Для среднего случая коммерческого М = 3 кГц. Критическим вопросом исследования распространения на реальной Земле является определение, находятся ли передающая и приемная антенны в пределах прямой видимости друг к другу. Желательно, чтобы две антенны «видели» друг друга. Это термин, который нельзя трактовать буквально.

Он указывает, что между передающей антенной и приемной антенной не должно быть препятствий. Случай 1: Если одна из антенн поднята, а другая - на Земле, как на рисунке. Проблема сводится к нахождению расстояния до видимого горизонта. Случай 2: распространение наземных волн с высокими антеннами показано на рисунке. Прямой диапазон видимости.

На дециметровых волнах дифракция практически отсутствует, и дальность приема не превышает дальности прямой видимости. Случаи дальнего и сверхдальнего приема телевизионных передач на дециметровых волнах связывают с образованием атмосферных волноводов над тропическими морями при аномальном состоянии атмосферы (суперрефракция).

Обычно встречаются возвышения в пути распространения. В таких случаях волны будут перемещаться в присутствии препятствий, хотя передающая и приемная антенны находятся в пределах прямой видимости. Вопрос в том, что размеры препятствия - одна из длин волн?

Волны начинаются от антенны в А и доходят до антенны в В, но разными путями. На первый взгляд может показаться, что радиоволны распространяются по холмам так же, как на плоской местности, за исключением того, что вместо одного луча больше прибудет. Радиопропагация на краях ножа. Края ножа - это острые и непрозрачные препятствия на пути распространения. Этот идеализированный край, лишенный всех электрических, позволяет вычислять поле, дифрагированное широко известным.

Дальность распространения метровых и дециметровых волн практически не зависит от метеоусловий.

Сантиметровые и миллиметровые волны также распространяются в пределах прямой видимости, однако дальность их распространения существенно зависит от метеоусловий. Поглощение сантиметровых волн во влажном воздухе составляет 0,01 дБ/км, на частоте 24 ГГц наблюдается резонансное поглощение в водяном паре (0,2 дБ/км), на частоте 60 ГГц в кислороде (13 дБ/км). Поглощение и рассеяние происходит во время дождя от 0,1 до 10 дБ/км в зависимости от интенсивности дождя.

Прохождение молнии не затруднено. Анализируются два случая распространения радиоволн на краях ножа. В этом случае край ножа препятствует прохождению волнового фронта. Следующие задания могут быть изменены или созданы в соответствующей теме, в зависимости от фокуса и интереса ученика.

Также возможно участие в интересных экспериментальных измерениях. В частности, туннели метрополитена в мире, автодорожные туннели или валы аэропортов, торговых центров и т.д. используют технологию лучистого кабеля. Назначение работы будет сосредоточено на выбранных свойствах и преимуществах щелевых кабелей в радиомонике, а также предполагает экспериментальную деятельность.

Микроволновые диапазоны используются для профессиональной и любительской связи, радиолокации, передачи телевизионных программ и УКВ-ЧМ вещания. В этих диапазонах работают спутниковые системы связи и радиорелейные линии. Справочная книга радиолюбителя. /Под ред. Н. И. Чистякова. - М. : Радио и связь, 1990.

3. Факторы, влияющие на дальность и качество радиоволн В отличие от СДВ и ДВ, которые отражаются от нижней границы ионосферы, не проникая в ее толщу, и от СВ, которые отражаются от области Е только в ночные часы, в распространении КВ принимают участие все три слоя ионосферы: D, Е и F 2. При этом области D и Е обычно выполняют функции поглощающих слоев, а F 2 -- отражающего слоя. Так же, как и в диапазоне СДВ, на КВ можно установить связь с любой точкой земного шара, однако если на длинных волнах это достигается ценой применения сверхмощных передатчиков (в сотни киловатт) и очень сложных и высоких антенн (с мачтами высотой в сотни метров), то в диапазоне КВ связь с антиподом может быть осуществлена при помощи передатчика мощностью в десятки ватт и весьма простых антенн. Кроме того, благодаря большей частотной емкости диапазона КВ по сравнению с емкостью диапазонов ДВ и СДВ, в нем может одновременно работать без взаимных помех большое число телеграфных и фототелеграфных каналов связи и систем связи для передачи данных. Черный Ф. Б. Распространение радиоволн. - М.: Советское «Радио», 1975.Уверенный приём дальних вещательных станций зависит как от времени года, так и от солнечной активности. Дело в том, что солнечная активность существенно влияет на состояние ионосферы - оболочки Земли, состоящей из разряженного и ионизированного газа. Эта оболочка простирается на 1000 и более километров от поверхности Земли, но для коротких волн существенной является та её часть, которая расположена на высоте от 50 до 400 км.

Радиоволны КВ так же, как и свет, распространяются прямолинейно. Но они могут преодолевать многие тысячи километров, огибая земной шар громадными скачками от нескольких сотен до 3000 км и более, отражаясь попеременно от слоя ионизированного газа и от поверхности Земли или от воды.

Для планирования фиксированных наземных и спутниковых беспроводных соединений также необходимо проанализировать помехи между соединениями. Для этой цели желательно точно моделировать ослабление длины волны из-за множественного затенения полевыми препятствиями. Проект фокусируется на критическом сравнении соответствующих существующих моделей в широком диапазоне частот, используя уникальные экспериментальные данные, полученные на рабочем месте.

Влияние формы препятствия на точность дифракционного расчета. Для планирования беспроводных соединений в неровной местности необходимо рассчитать дифракционные потери при затенении соединения препятствиями местности. Проект направлен на изучение влияния формы препятствий для точности прогнозирования потерь на некоторых моделях, использующих уникальные экспериментальные данные, полученные на рабочем месте, при поддержке Европейского космического агентства.

Ещё в 20-х годах нашего столетия считалось, что радиоволны короче 200 м вообще не пригодны для дальней связи из-за сильного поглощения. И, вот когда были проведены первые эксперименты по дальнему приёму коротких волн через Атлантику между Европой и Америкой, английский физик Оливер Хэвисайд и американский инженер-электрик Артур Кеннели независимо друг от друга предположили, что где-то вокруг Земли существует ионизированный слой атмосферы, способный отражать радиоволны. Этот слой получил название Хэвисайда-Кеннели, или ионосферы.

Влияние преломления на дифракционные потери. Из-за распространения криволинейной волны из-за преломления эти потери могут значительно варьироваться в зависимости от моментального состояния тропосферы. Целью проекта является анализ этого явления с использованием данных с долгосрочным 50-километровым экспериментальным звеном. Экспериментальный анализ улучшений наземного уровня.

Для качества и надежности фиксированных наземных беспроводных каналов в полосе см и мм тропосферный эффект имеет решающее значение. Это в основном приводит к потерям во времени, так называемым утечкам, а также к повышению уровня сигнала по долгосрочному среднему значению. Это очень важно для анализа помех. Целью проекта является статистический анализ этого явления с использованием данных с длинной 50-километровой экспериментальной связью.

По современным представлениям ионосфера состоит из отрицательно заряженный свободных электронов и положительно заряженный ионов, в основном молекулярного кислорода O+ и окиси азота NO+ . Ионы и электроны образуются в результате ионизации, которая заключается в отрыве электрона от нейтральной молекулы газа. А для того, чтобы оторвать электрон, необходимо затратить некоторую энергию - энергию ионизации, основным источником которой для ионосферы является Солнце, точнее его ультрафиолетовое, рентгеновское и корпускулярное излучения.

Пока газовая оболочка Земли освещена Солнцем, в ней непрерывно образуются всё новые и новые электроны, но одновременно часть электронов, сталкиваясь с ионами, вновь образует нейтральные частицы - атомы и молекулы. После захода Солнца образование новых электронов почти прекращается, и число свободных электронов начинает убывать. Вообще, чем больше свободных электронов в ионосфере, тем лучше от неё отражаются волны высокой частоты. А если электронов мало, то дальнее прохождение наблюдается только на низкочастотных КВ диапазонах. Вот почему ночью, как правило, возможен приём дальних станций лишь в диапазонах 75, 49, 41 и 31 м.

Электроны распределены в ионосфере неравномерно. На высоте от 50 до 400 км имеется несколько слоёв или областей повышенной концентрации электронов. Эти области плавно переходят одна в другую и по-разному влияют на распространение радиоволн КВ диапазона.

Самая верхняя область, кстати, самая плотная, получила название области F. Она расположена на высоте более 150 км над поверхностью Земли и играет основную отражательную роль при дальнем распространении радиоволн высокочастотных КВ диапазонов. Иногда в летние месяцы область F распадается на два слоя - F1 и F2. Слой F1 может занимать высоты от 200 до 250 км, а слой F2 как бы “плавает” в интервале высот 300 ... 400 км. Обычно слой F2 ионизирован значительно сильнее слоя F1. Ночью слой F1 исчезает, а слой F2 остаётся, медленно теряя до 60 % своей ионизации.

Ниже области F на высотах от 90 до 150 км расположена область E, ионизация которой происходит под воздействием мягкого рентгеновского излучения Солнца. Обычно степень ионизации области E ниже, чем области F. При этом днём приём станций низкочастотных КВ диапазонов 31 и 25 м происходит при отражении сигналов от области E. Обычно это станции, расположенные на расстоянии 1000 ... 1500 км. Ночью в области E ионизация резко уменьшается, но и в это время она продолжает играть заметную роль в приёме сигналов станций диапазонов 41, 49 и 75 м.

Большой интерес для приёма сигналов высокочастотных КВ диапазонов 16, 13 и 11 м представляют образующиеся в области E прослойки (точнее облака) сильно повышенной ионизации. Площадь этих облаков может изменяться от единиц до сотен квадратных километров. Этот слой повышенной ионизации получил название - спорадический слой E и обозначается Es. Облака Es могут перемещаться в ионосфере под воздействием ветра и достигать скорости до 250 км/час. Летом в средних широтах в дневное время происхождение радиоволн за счёт облаков Es за месяц бывает 15 ... 20 дней. В районе экватора он присутствует почти всегда, а в высоких широтах обычно появляется ночью. В годы низкой солнечной активности, когда нет прохождения на высокочастотный КВ диапазонах, иногда, как подарок, на диапазонах 16, 13 и 11 м с хорошей громкостью вдруг появляются дальние станции, сигналы которых многократно отразились от Es.

Самая нижняя область ионосферы - область D расположена на высотах между 50 и 90 км. Здесь сравнительно мало свободных электронов. От области D хорошо отражаются длинные и средние волны, а вот сигналы станций низкочастотный КВ диапазонов сильно поглощаются. Это днём, а после захода Солнца ионизация очень быстро исчезает и появляется возможность принимать дальние станции в диапазонах 41, 49 и 75 м, сигналы которых отражаются от слоёв F2 и E.

Из изложенного выше стала понятна роль отдельных слоёв ионосферы а распространении сигналов КВ радиостанций. Необходимо добавить, что если сигнал отразился от слоя E (или Es), то скачок не превышает 2000 км, а от слоя F (точнее F2) - 4000 км. Скачков может быть несколько, и тогда к вашему радиоприёмнику приходят сигналы от вещательных станций, отстоящих на тысячи километров. На дневной стороне Земли такой сигнал довольно сильно ослабляется при многократном прохождении через область D. За один скачок это случается дважды. Чем ниже частота, тем это ослабление заметнее. Но это единственный путь волны в ионосфере по пути от передатчика к вашему приёмнику. Иногда создаются такие условия, при которых волна, отразившись от слоя F2, не возвращается обратно к Земле, а распространяется, отражаясь попеременно от слоёв E(Es) и F2. Волна как бы попала в ионосферный волновод и проходит многие тысячи километров при относительно малом ослабление.

А вот подходящие условия для выхода волны из этого волновода обычно образуются в месте приёма при восходе или заходе Солнца. Обычно это даёт возможность принимать станции, расположенные на противоположный точке земного шара. Это явление наиболее явно выражено на низкочастотных КВ диапазонах. Продолжительность такого приёма в диапазоне 75 м может быть около часа. При переходе на более коротковолновые диапазоны это время сокращается.

На условия распространения КВ сильное влияние оказывает одиннадцатилетний период солнечной активности, фаза которого определяет общую интенсивность солнечного ультрафиолетового и рентгеновского излучений, а следовательно и суммарную ионизацию атмосферы Земли: в годы максимума эта ионизация возрастает, в годы минимума -- убывает. Понятно поэтому, что для практики распространения КВ очень важно располагать сведениями о состоянии солнечной активности.

В течение долгого времени после начала применения в технике связи и в радиолокации ультракоротких волн ученые и инженеры считали, что волны этого диапазона не способны распространяться на большие расстояния. И только к 1950 г. на основании многочисленных экспериментальных фактов был сделан вывод о существовании нового механизма, способствующего распространению УКВ на расстояния, значительно превосходящие дальность дифракционного горизонта.

Специально поставленные исследования показали, что причиной дальнего распространения УКВ является рассеяние волн на глобулярных неоднородностях тропосферы и отражения от слоистых неоднородностей.

В качестве приемных антенн в тропосферных линиях связи применяются также направленные антенны. Поэтому в приемную антенну попадают только те лучи, которые рассеиваются неоднородностями, расположенными в пределах общего объема, образованного пересечением пространственных диаграмм направленности передающей и приемной антенн.

Большим преимуществом тропосферных линий связи по сравнению с линиями ионосферного рассеяния и метеорными трассами является возможность передачи относительно больших потоков информации. В то время как по линиям ионосферного рассеяния и по метеорным |трассам можно передавать одно-два телеграфных сообщения, тропосферные каналы способны пропускать одну телевизионную передачу или 120 телефонных разговоров. При этом качество передачи по тропосферным каналам заметно уступает передаче по радиорелейным линиям связи обычного типа.

Для получения такой относительной широкополосности приходится принимать энергичные меры для борьбы с замираниями, сопровождающими тропосферное распространение волн. Достигается это применением на каждом конечном пункте линий связи двух передатчиков по 10--15 квт, работающих на различных частотах, и двух больших антенн (обычно параболических, размером 20X20 м), четырех отдельных приемных устройств для осуществления разнесения по частоте и в пространстве.

Заключение Для радиосвязи используются следующие 12 диапазонов радиоволн, границы которых по частоте определяются соотношением 0,3·10 N -3·10 N (здесь N -- номер диапазона): четвертый -- мириаметровые волны (100--10 км), пятый -- километровые волны 10--1 км), шестой -- гектометровые волны (1000--100 м), седьмой-- декаметровые волны (100--10 м), восьмой - метровые волны (10--1 м), девятый -- дециметровые волны (1,0--0,1 м), десятый -- сантиметровые волны (10--1 см), одиннадцатый -- миллиметровые волны (10 -- 1 мм), двенадцатый -- децимиллиметровые волны (1,0--0,1 мм).В системах оптической и лазерной связи применяются частоты четырнадцатого и пятнадцатого диапазонов (до 10 15 Гц).Диапазон мириаметровых волн (3-- 30 кГц) используется, как правило, для радиосвязи под водой, диапазоны километровых (30--300 кГц) и гектометровых (300-- 3000 кГц) волн применяются в звуковом радиовещании и международной спасательной службе. На декаметровых волнах (коротковолновый диапазон 3--30 МГц) работают системы дальнего звукового радиовещания, дальней радиотелефонной и телеграфной радиосвязи.Современные системы радиосвязи, предназначенные для передачи многоканальных телефонных сообщений, телевидения, передачи данных со скоростями до десятков мегабит в секунду, работают в метровом (30--300 МГц), дециметровом (300--3000 МГц) и сантиметровом (3--30 ГГц) диапазонах волн.Общий вывод заключается в том, что надежность работы радиоэлектронной системы, составной частью которой является тракт распространения радиоволн, в полной мере определяется также надежностью прохождения волн по тракту. Именно в этом и заключается роль процессов распространения в современной радиоэлектронике.Литература 1. Альперт Я. Л., Гусева Э. Г., Флигель Д. С. Распространение низкочастотных электромагнитных волн в волноводе Земля -- ионосфера. - М.: Изд-во «Наука», 1977.2. Долуханов М. П. Распространение радиоволн. - М.: Советское «Радио», 1972.3. Справочная книга радиолюбителя. /Под ред. Н. И. Чистякова. - М. : Радио и связь, 1990.4. Справочник по радиоэлектронным системам. / Под ред. Б. Х. Кривицкого. - М. : Энергия, 1979.5. Фейнберг Е. Л. Распространение радиоволн вдоль земной поверхностн. - М.: Изд-во АН СССР, 1979.6. Фок В. А. Дифракция радиоволн вокруг земной поверхности. - М.: Изд-во АН СССР, 1979.7. Фок В. А. Проблемы дифракции и распространение электромагнитных волн. - М.: Советское «Радио», 1970.8. Черный Ф. Б. Распространение радиоволн. - М.: Советское «Радио», 1975.

Радиооборудование. Лекция №2

Авиационное радиооборудование - это бортовые устройства радиотехнических средств связи, навигации, посадки и управления воздушным движением.

Работа радиооборудования основана на использовании энергии радиоволн (радиоволны - электромагнитные колебания, применяемые для радиосвязи, радионавигации и радиовещания). Радиоволнам присущ ряд общих свойств. Основными из них являются:

Поглощение энергии радиоволн наблюдается при прохождении их через различные вещества.

Рассеяние энергии радиоволн. Радиоволны идут от излучателя во всех направлениях. По мере их удаления энергия распределяется на все большее пространство. Плотность потока энергии, приходящаяся на единицу площади сферической поверхности, становится все меньше.

Отражение и преломление радиоволн наблюдается на поверхности раздела двух сред, имеющих различную диэлектрическую и магнитную проницаемость.

Дифракция радиоволн - это способность радиоволн огибать кривизну земной поверхности и других препятствий. Чем больше длина волны по сравнению с размером препятствия, тем лучше проявляется дифракция. При огибании препятствий частично теряется энергия радиоволн.

Интерференция радиоволн есть сложение в пространстве двух или нескольких волн с одинаковыми периодами. Интерференция может наблюдаться между двумя волнами одной и той же радиостанции, пришедшим к месту приема различными путями. Если сдвиг фаз равен нулю или четному числу полуволн, то в результате сложения амплитуда результирующей волны возрастает, а если сдвиг фаз равен нечетному числу полуволн, то получается минимум результирующей волны. Это может привести к нарушению регулярности радиосвязи.

Одним из наиболее существенных факторов, определяющих пути и дальность распространения радиоволн является длина волны.

Длиной волны называется путь, пройденный радиоволной в пространстве за время равное одному периоду.

В свободном пространстве радиоволны распространяются со скоростью около 300000 км/с.

В соответствии с особенностями распространения весь спектр радиоволн условно разделяют на диапазоны:

Километровые (длинные) - с длиной волны 10-1 км

Гектометровые (средние) - с длиной волны 1км- 100м

Декаметровые (короткие) - с длиной волны 100м -10м

Ультракороткие - с длиной волны 10м - 1мм.

Длинам волн соответствуют частоты, которые можно определить из соотношения: Длина волны (м) = 300 / частота (МГц)

Особенности распространения радиоволн различных диапазонов

Длинные волны распространяются на значительные расстояния, за счет поверхностного и пространственного луча. Это объясняется хорошей дифракцией и малым поглощением энергии радиоволн земной поверхностью. Но для дальних связей требуются мощные передатчики и громоздкие антенные устройства. Ионосфера на длинных волнах обладает наибольшей проводимостью и мало поглощает энергию. Качество приема на длинных волнах ухудшается из-за атмосферных и промышленных помех (грозовые разряды, дуга электросварки, искрящие щетки генераторов и электродвигателей на самолете)

Диапазон длинных волн используется для радиосвязи и радионавигации.

Средние волны аналогично длинным распространяются поверхностным и пространственным лучом. В диапазоне средних волн несколько уменьшается проводимость почвы и ионосферы, вследствие этого возрастают потери энергии поверхностных волн. Дальность их распространения меньше, чем в диапазоне длинных волн. Пространственные волны поглощаются ионосферой в такой степени, что не могут быть использованы для радиосвязи.

Прием на средних волнах подвержен воздействию атмосферных и промышленных помех, причем уровень атмосферных помех выше летом, чем зимой. Средневолновый диапазон используется для авиационной радионавигации.

Короткие волны подобно длинным и средним распространяются поверхностным и пространственным лучом. Вследствие большого поглощения энергии поверхностных волн почвой и слабо выраженной дифракции они распространяются на расстояние, не превышающее нескольких десятков километров. Исключение составляют самолетные коротковолновые передатчики, находящиеся на определенной высоте. Пространственный луч отражается от ионосферы и падает на земную поверхность на большом расстоянии от передатчика, достигающем 3000-4000км. При многократном отражении пространственной волны от ионосферы и от земной поверхности дальность распространения может достигать 20000км.

Основные преимущества коротких волн - это большая дальность распространения пространственных радиоволн при малой мощности передатчика и меньше влияние на прием атмосферных и промышленных помех. Диапазон коротких волн используется для воздушной и наземной авиационной радиосвязи.

Ультракороткие волны не отражаются от ионосферы, а проходят сквозь нее в космическое пространство. Для наземной радиосвязи и радионавигации может быть использован только поверхностный луч.

В настоящее время применяются системы дальней ультракоротковолновой связи с использованием искусственных спутников Земли в качестве ретрансляторов.

Волны с длинной меньше 20см хорошо отражаются дождем, парами воды, снегом и тем более другими наземными и воздушными объектами. Это свойство УКВ используется для радиолокации. Радиолокационное устройство, установленное на самолете, позволяет пилоту с помощью радиоволн оценивать метеорологическую обстановку, предупреждать столкновение самолетов в воздухе и т. д.

Передающие и приемные антенны самолетных ультракоротковолновых радиостанций подняты над земной поверхностью, что позволяет вести воздушную связь на УКВ за счет поверхностной волны на расстояниях в несколько сотен километров. Наиболее существенное преимущество диапазона УКВ - его очень широкий частотный спектр, обеспечивающий работу большого числа радиостанций, а также отсутствие атмосферных и промышленных помех.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!