Компьютер. Радиоэлектроника. Блоки питания. Справочники. Источники питания. Радиосвязь

Как проверить микросхему тестером. Как самостоятельно провести диагностику ЖК телевизора или плазменной панели в домашних условиях. Как с помощью мультиметра и тестера выявить неисправности в жк-телевизоре и обнаружить сломанные или сгоревшие радиодетали,


Сегодня мы поговорим о том, как самостоятельно провести диагностику ЖК телевизора или плазменной панели в домашних условиях. Также узнаем, как с помощью мультиметра и тестера выявить неисправности в жк-телевизоре и обнаружить сломанные или сгоревшие радиодетали, платы и микросхемы

Диагностику ЖК телевизора необходимо начинать с чистки аппарата. Вооружившись мягкой кистью и пылесосом, следует произвести чистку внутренней поверхности корпуса, поверхности микросхем и платы телевизионного приемника. После тщательной очистки производят внешний осмотр платы и элементов на ней. Иногда можно сразу определить место неисправности по вздувшимся или разорвавшимся конденсаторам, по обгоревшим резисторам или по прогоревшим насквозь транзисторам и микросхемам.


Значительно чаще визуальный осмотр не выявляет внешних признаков неисправных деталей. И тут возникает вопрос - с чего начать?


Наиболее целесообразно начать ремонт жк телевизора с проверки работоспособности блока питания. Для этого отключаем нагрузку и подключаем вместо нее лампу накаливания 220 В, 60...100 Вт.


Обычно напряжение питания строчной развертки составляет 110...150 В в зависимости от размеров кинескопа. Просмотрев вторичные цепи, на плате рядом с импульсным трансформатором блока питания находим конденсатор фильтра, который чаще всего имеет емкость 47...100 мкФ и рабочее напряжение порядка 160 В. Рядом с фильтром находится выпрямитель напряжения питания строчной развертки.

После фильтра напряжение поступает на выходной каскад через дроссель, ограничительный резистор или предохранитель, а иногда на плате стоит просто перемычка. Отпаяв этот элемент, мы отключим выходной каскад блока питания от каскада строчной развертки. Параллельно конденсатору подключаем лампу накаливания - имитатор нагрузки.


При первом включении ключевой транзистор блока питания может выйти из строя из-за неисправности элементов обвязки. Для того чтобы этого не произошло, блок питания лучше включать через еще одну лампу накаливания мощностью 100...150 Вт, используемую в качестве предохранителя и включенную вместо выпаянного компонента. Если в схеме есть неисправные элементы и ток потребления будет большим, лампа загорится, и все напряжение упадет на ней.

В такой ситуации необходимо, прежде всего, проверить входные цепи, сетевой выпрямитель, конденсатор фильтра и мощный транзистор блока питания. Если при включении лампа зажглась и сразу погасла или стала слабо светиться, то можно предположить, что блок питания исправен, и дальнейшую регулировку лучше производить без лампы.


Включив блок питания, замерьте напряжение на нагрузке. Внимательно посмотрите на плате, нет ли около блока питания резистора регулировки выходного напряжения. Обычно рядом с ним находится надпись, указывающая величину напряжения (110...150 В).



Если таких элементов на плате нет, обратите внимание на наличие контрольных точек. Иногда величину напряжения питания указывают рядом с выводом первичной обмотки строчного трансформатора. Если диагональ кинескопа 20...21", напряжение должно быть в диапазоне 110...130 В.


Если напряжение питания выше указанных значений, надо проверить целостность элементов первичной цепи блока питания и цепь обратной связи, которая служит для установки и стабилизации выходного напряжения. Следует также проверить электролитические конденсаторы. При высыхании их емкость значительно уменьшается, что приводит к неправильной работе схемы и повышению вторичных напряжений.

Особо надо остановиться на диагностике блока управления ЖК телевизором.
При его ремонте желательно пользоваться схемой или справочными данными на процессор управления. Если не удалось найти таких данных, можно попытаться скачать их с сайта производителя этих компонентов через Интернет


Неисправность в блоке может проявляться следующим образом: телевизор не включается, телевизор не реагирует на сигналы с пульта или кнопок управления на передней панели, нет регулировок громкости, яркости, контрастности, насыщенности и других параметров, нет настройки на телевизионные программы, не сохраняются настройки в памяти, нет индикации параметров управления.


Если телевизор не включается, прежде всего проверяем наличие питания на процессоре и работу тактового генератора. Затем нужно определить, поступает ли сигнал с процессора управления на схему включения. Для этого необходимо выяснить принцип включения телевизора.


Телевизор можно включить с помощью управляющего сигнала, который запускает блок питания, или с помощью снятия блокировки с прохождения строчных запускающих импульсов с задающего генератора до блока строчной развертки.
Следует отметить, что на процессоре управления сигнал на включение обозначается либо Power, либо Stand-by. Если сигнал с процессора поступает, то неисправность следует искать в схеме включения, а если сигнала нет, придется менять процессор.
Если телевизор включается, но не реагирует на сигналы с пульта, нужно для начала проверить сам пульт.


Проверить его можно на другом телевизоре такой же модели.
Для проверки пультов можно изготовить простое устройство, состоящее из фотодиода, подключенного к разъему СР-50. Устройство подключается к осциллографу, чувствительность осциллографа устанавливается в пределах 2...5 мВ. Пульт следует направить на светодиод с расстояния 1...5 см. На экране осциллографа при исправном пульте будут видны пачки импульсов. Если импульсов нет, диагностируем пульт.


Проверяем последовательно питание, состояние контактных дорожек и состояние контактных площадок на кнопках управления, наличие импульсов на выходе микросхемы пульта, исправность транзистора или транзисторов и исправность излучающих светодиодов.


Часто после падения пульта выходит из строя кварцевый резонатор. При необходимости меняем неисправный элемент или восстанавливаем контактные площадки и покрытие кнопок (это можно сделать, нанеся графит, например мягким карандашом, или наклеив на кнопки металлизированную пленку).


Если пульт исправен, нужно проследить прохождение сигнала от фотоприемника до процессора. Если сигнал доходит до процессора, а на его выходе ничего не меняется, можно предположить, что процессор неисправен.
Если телевизор не управляется с кнопок на передней панели, нужно сначала проверить исправность самих кнопок, а затем проследить наличие импульсов опроса и подачу их на шину управления.


Если телевизор включается с пульта и импульсы поступают на шину управления, а оперативные регулировки не работают, надо выяснить, с помощью какого вывода микропроцессор управляет той или иной регулировкой (громкость, яркость, контрастность, насыщенность). Далее проверить тракты данных регулировок, вплоть до исполнительных устройств.


Микропроцессор выдает управляющие сигналы с линейно изменяющейся скважностью, а поступая на исполнительные устройства, данные сигналы преобразуются в линейно изменяющееся напряжение.


Если сигнал поступает на исполнительное устройство, а реакции устройства на этот сигнал нет, то ремонту подлежит данное устройство, а если нет управляющего сигнала, замене подлежит процессор управления.


При отсутствии настройки на телевизионные программы сначала проверяем узел выбора поддиапазона. Обычно через буферы, реализованные на транзисторах, с процессора подается напряжение на выводы тюнера (0 или 12 В). Чаще всего выходят из строя именно эти транзисторы. Но бывает, что с процессора нет сигналов переключения поддиапазонов. В этом случае надо менять процессор. .

Далее проверяем узел выработки напряжения настройки. Напряжение питания обычно поступает от вторичного выпрямителя со строчного трансформатора и составляет 100...130 В. Из этого напряжения с помощью стабилизатора формируется 30...31 В.


Микропроцессор управляет ключом, формирующим напряжение настройки 0...31 В с помощью сигнала с линейно изменяющейся скважностью, который после фильтров преобразуется в линейно изменяющееся напряжение.

Элементы не способны идеально перекрыть поток света - черный цвет на экране ЖК-телевизора на самом деле не является абсолютно черным.

Из недостатков также необходимо отметить искажение цветов и потерю контрастности, поскольку угол обзора у ЖК не так уж широк. Из-за этой особенности LCD-телевизоры долго не могли завоевать популярность, но сейчас, благодаря усилиям разработчиков, искажения стали практически незаметны.

К достоинствам телевизоров с жидкокристаллическим экраном можно отнести широкий выбор моделей с различными показателями яркости (от 250 до 1500 кд/м2) и контрастности (от 500:1 до 5 000 000:1). Благодаря этому, покупатель может приобрести аппарат, оптимально сочетающий в себе требуемое качество изображения и доступную цену. Кроме того, ЖК-телевизоры обладают малым весом и толщиной, поэтому их можно размещать на стене.

Но самая большая заслуга жидкокристаллической технологии - в ее массовости. За счет широкомасштабного производства, цены на телевизоры с ЖК-матрицей сейчас ниже, чем на другие подобные устройства.

Чаще всего выходит из строя стабилизатор 30...33 В. Если в телевизоре не сохраняются настройки в памяти, надо при любой настройке проверить обмен данными между процессором управления и микросхемой памяти по шинам CS, CLK, D1, DO. Если обмен есть, а значения параметров в памяти не хранятся, замените микросхему памяти.


Если в телевизоре нет индикации параметров управления, необходимо в режиме индикации проверить наличие пачек видеоимпульсов служебной информации на процессоре управления по цепям R, G, В и сигнал яркости, а также прохождение этих сигналов через буферы на видеоусилители.

Вы должны понимать что вы делаете и соблюдать технику безопасности, в том числе электростатической (в т.ч. работать в антистатическом браслете).
Стандарт ATX имеет 2 версии - 1.X и 2.X, имеющие 20 и 24-пиновые коннекторы соответственною, вторая версия имеет 24-x 4 дополнительных пина, удлиняя тем самым стандартный коннектор на 2 секции таким образом:

Прежде чем мы начнем, расскажу про “правила большого пальца” по отношению к неисправностям ЖК телевизора:


1) Проблемную телевизионную плату в ЖК или плазме легче заменить чем починить, это крайне сложная и многослойная схема, в которой разве что можно заменить пару конденсаторов, а обычно это проблемы не решает.
2) Если вы не уверены в том что вы делаете, то не делайте этого.



Для более точной и углубленной диагностики ЖК телевизора вам понадобится осциллограф.

Перейдем к диагностике ЖК телевизора или плазмы:

Вам понадобится обычный мультиметр и тестер. Необходимы достаточно тонкие щупы, для того чтобы мы могли тыкнуть в провод с задней части коннектора, конденсатора, резистора и любой другой радиодетали.
Ничего из корпуса ЖК телевизора не вынимаем. Диагностику проводим с коннектором питания в проверяемой плате, и включенным блоком питания, подключенным к сети.


Проверка напряжения
ЖК телевизора :


Если ваш мультиметр не имеет функции автоматической подстройки диапазона, то выставьте его на измерение десяток вольт постоянного напряжения. (Обычно обозначается 20 Vdc)
Поставим черный щуп на землю (GND-pin, COM) - черный провод, к примеру контакты 15, 16, 17.

Концом красного щупа тыкаем в:

1) Пин 9 (Пурпурный, VSB) - должен иметь напряжение 5 вольт ± 5%. Это резервный интерфейс питания и он работает всегда, когда блок питания подключен к сети. Он используется для питания компонентов, которые должны работать, пока 5 основных каналов питания недоступны. К примеру - контроль питания, Wake on LAN, USB-устройства у телевизора, контроль вскрытия и т.д.
Если напряжения нет или он меньше/больше, то это означает серьезные проблемы со схемой самого блока питания.

2) Пин 14 (Зеленый, PS_On) должен иметь напряжение в районе 3-5 вольт. Если напряжения нет, то отключите кнопку питания от проверяемой платы или микросхемы. Если напряжение поднимется, то виновата кнопка.

Все еще держим красный щуп на 14ом контакте…


3) Смотрим на мультиметр и нажимаем кнопку питания, напряжение должно упасть до 0, сигнализируя блоку питания о том, что надо врубать основные рельсы питания постоянного тока: +12VDC, +5VDC, +3.3VDC, -5VDC и -12 VDC. Если изменений нет, то проблема либо в процессоре/ плате, либо в кнопке питания. Для того чтобы проверить кнопку питания вытаскиваем ее коннектор из разъема на микросхеме или плате и легонько закорачиваем пины легким прикосновением отвертки или джампером. Также можно попробовать аккуратно проводом закоротить PS_On на землю сзади. Если изменений нет, то скорее всего что-то случилось с проверяемой платой, процессором или его сокетом.


Если подозрения все-таки падают именно на процессор, то можно попытаться заменить процессор на известный исправный, но делать это на свой страх и риск, поскольку если убила его неисправная плата, то тоже самое может случиться и с этим.
При напряжении ~0 В на PS_On… (Т.e. после нажатия на кнопку)
4) Проверяем Pin 8 (Серый, Power_OK) он должен иметь напряжение ~3-5V, что будет означать что выходы +12V +5V и +3.3V находятся на приемлемом уровне и держат его достаточное время, что дает процессору сигнал стартовать. Если напряжение ниже 2.5V то процессор телевизора не получает сигнала к старту.
В таком случае виноват блок питания.

5) Нажатие на Restart должно заставить напряжение на PWR_OK упасть до 0 и быстро подняться обратно.
На некоторых телевизионныхплатах этого происходить не будет, в случае если производитель использует “мягкий” триггер перезагрузки.

При напряжении ~5V на PWR_OK
6) Смотрим на таблицу и сверяем основные параметры напряжения на коннекторе и всех коннекторах периферии:

Тестируем ЖК телевизор на пробои:

ОТКЛЮЧАЕМ ЖК ТЕЛЕВИЗОР ОТ СЕТИ и ждем 1 минуту пока уйдет остаточный ток.

Ставим мультиметр на измерение сопротивления. Если ваш мультиметр не имеет автоматической подстройки диапазона, то ставим его на самый нижний порог измерений (Обычно это значок 200 Ω). Из-за погрешностей, замкнутая цепь не всегда соответствует 0 Ом. Сомкните щупы мультиметра и посмотрите какую цифру он показывает, это и будет нулевым значением для замкнутой цепи.

Проверим цепи блока питания ЖК телевизора :

Вынимаем коннектор из проверяемой платы…
И держа один из концов мультиметра на металлической части корпуса телевизора…
1) Дотрагиваемся щупом мультиметра до одного из черных проводов в коннекторе, а потом до среднего штырька (земли) сетевой вилки. Сопротивление должно быть нулевым, если это не так, то блок питания плохо заземлен и его следует заменить.
2) Дотрагиваемся щупом до всех цветных проводов в коннекторе по очереди. Значения должны быть больше нуля. Значение, равное 0 или меньше 50 Ом означает проблему в цепях питания.


3) Дотрагиваемся одним щупом мультиметра до шасси, а другим тыкаем во все разъемы земли (GND, пины 3, 5, 7, 13, 15, 16, 17) и смотрим на мультиметр. Сопротивление должно быть нулевым. Если оно не нулевое вытаскиваем телевизионную плату из корпуса и тестируем опять, только в этот раз один из щупов должен касаться металлизированного колечка у отверстия для шурупов на которых плата фиксируется к задней стенке корпуса жк-телевизора. Если значение сопротивления все еще ненулевое, то с цепями проверяемой платы что-то глубоко не так и скорее всего ее придется менять.

К сожалению, рано или поздно любая техника начинает некорректно работать либо вовсе перестаёт функционировать. Зачастую это случается из-за выхода из строя микросхемы, а точнее, из-за поломки определённых деталей на микросхеме. Наиболее важными и в то же время наименее надёжными элементами в цепи являются конденсаторы.

Конденсаторами являются устройства способные накапливать электрический заряд. Конструкция данной детали достаточно простая и представляет собой две токопроводящие пластины , между которыми расположен диэлектрик. Наиболее важной характеристикой этого элемента является его ёмкость. Величина ее зависит от толщины токопроводящих пластин и диэлектрика. Единица измерения ёмкости устройства называется Фарад. В электрической цепи конденсатор является пассивным элементом, поскольку он не влияет на преобразование электрической энергии. Он также способен оказывать так называемое реактивное сопротивление переменному току.

Виды конденсаторов

По принципу работы они разделяются на два типа:

  • полярные;
  • неполярные.

Полярными являются конденсаторы электрические, в которых используется электролит. Благодаря расположенному внутри электролиту, вместо одной из токопроводящих пластин и обретается полярность. Полярные конденсаторы имеют отдельный контактный вывод на плюс и на минус. Если включить в электрическую схему такую деталь, не учитывая полярность, то она достаточно быстро выйдет из строя. Ёмкость элементов электролитического типа начинается от 1 микроФарада и может достигать сотен тысяч микроФарад.

Неполярными называются конденсаторы, имеющие небольшую ёмкость. В таких устройствах не присутствует электролит , соответственно их можно включать в схему как угодно.

Проверка на работоспособность

Для того чтобы произвести проверку конкретного элемента на микросхеме и получить достоверную информацию о его состоянии, его следует демонтировать с микросхемы. Если деталь не выпаять, то элементы, расположенные на плате по соседству, от необходимой нам, будут вносить искажения в получаемые показания в момент измерения её ёмкости.

После того как измеряемый конденсатор выпаян из цепи, его необходимо визуально проверить на присутствие каких-либо дефектов. Если таковые обнаружатся, такая деталь автоматически становится непригодной к использованию.

Если визуальная проверка не выявила никаких повреждений, то следует начать проверять элементов микросхемы мультиметром.

Мультиметр

Это прибор, благодаря которому существует возможность измерять показания постоянного и переменного тока, уровни мощности и сопротивления электрических сетей, а также точно устанавливать внутреннюю ёмкость конденсаторов.

Перед тем как начнётся проверка каких-либо элементов мультиметром, необходимо проверить исправность самого мультиметра. Для этого регулятор прибора нужно установить в положение прозвона , после чего щупы мультиметра прижимают друг другу и если он начинает пищать, то значит он исправен.

Далее, можно проверять все элементы на исправность. Прекрасным способом станет проверка конденсатора на возможность заряжаться. Для этого необходимо взять деталь электролитического типа и выставить тестер с помощью регулятора в положение прозвонки. Далее, щупы мультиметра нужно установить на деталь согласно обозначениям полярности, плюс к плюсу, минус к минусу. В случае исправности детали, на табло мультиметра будут отображаться плавно возрастающие до бесконечности числовые значения. После того как измеряемый элемент окончательно зарядится, тестер издаст звуковой сигнал, а на табло начнёт отображаться единица, что также свидетельствует о корректной работе проверяемой детали.

С тем как проверить конденсаторы мультиметром на сопротивление, разобраться тоже очень просто. Сперва тестер необходимо выставить в положение измерения сопротивления , после чего, как и в случае измерения ёмкости, при касании щупами детали, на цифровом табло или шкале мультиметра будет отображаться значение номинального сопротивления.

Но часто бывает и так, что при проверке мультиметром, деталь стала неисправной. Основных причин по которым ранее рабочий элемент перестаёт функционировать всего две:

  • пробой;
  • обрыв.

Пробой возникает в следствие так называемого засыхания конденсатора. Со временем диэлектрик между токопроводящими пластинами разрушается, постепенно теряя свои свойства. Вследствие этого между пластинами проходит ток, что приводит к короткому замыканию и сгоранию детали. Если проверять пробитый конденсатор мультиметром, то прикоснувшись к нему щупами, тестер начнёт пищать, а на табло будет отображаться ноль, что свидетельствует об отсутствии заряда в устройстве.

В момент такой неисправности, как обрыв при измерении, прибор вместо плавного возрастания показателей сопротивления, моментально выдаст максимальное значение заряженности конденсатора , что также свидетельствует о его неисправности и такой элемент немедленно следует заменить на такой же или аналогичный.

Часто возникает ситуация, когда из-за вышедшей из строя маленькой незначительной детали перестает работать бытовой прибор. Поэтому, ответ на вопрос, как прозванивать плату мультиметром, хотели бы знать многие начинающие радиолюбители. Главное в этом деле быстро обнаружить причину поломки.

Перед выполнением инструментальной проверки, необходимо осмотреть плату на наличие поломок. Электрическая схема платы должна быть без повреждений мостиков, детали не должны быть распухшими и черными. Приведем правила проверки некоторых элементов, в том числе и материнской платы.

Проверка отдельных деталей

Разберем несколько деталей, при поломке которых выходит из строя схема, а вместе с этим и все оборудование.

Резистор

На различных платах данную деталь применяют довольно часто. И так же часто при их поломке происходит сбой в работе прибора. Резисторы несложно проверить на работоспособность мультиметром. Для этого необходимо провести измерение сопротивления. При значении, стремящемся к бесконечности, деталь следует заменить. Неисправность детали можно определить визуально. Как правило, они чернеют из-за перегрева. При изменении номинала более 5%, резистор требует замены.

Диод

Проверка диода на неисправность не займет много времени. Включаем мультиметр на замер сопротивления. Красный щуп на анод детали, черный на катод – показание на шкале должно быть от 10 до 100 Ом. Переставляем , теперь минус (черный щуп) на аноде – показание, стремящееся к бесконечности. Эти величины говорят об исправности диода.


Катушка индуктивности

Плата редко выходит из строя по вине этой детали. Как правило, поломка случается по двум причинам:

  • витковое короткое замыкание;
  • обрыв цепи.


Проверив значение сопротивления катушки мультиметром, при значении менее бесконечности – цепь не оборвана. Чаще всего, сопротивление индуктивности имеет значение в несколько десятков омов.

Определить витковое замыкание немного труднее. Для этого прибор переводим в сектор измерения напряжения цепи. Необходимо определить величину напряжения самоиндукции. На обмотку подаем небольшой по напряжению ток (чаще всего используют крону), замыкаем ее с лампочкой. Лампочка моргнула – замыкания нет.

Шлейф

В этом случае следует прозванивать контакты входа на плату и на самом шлейфе. Заводим щуп мультиметра в один из контактов и начинаем прозвон. Если идет звуковой сигнал, значит, эти контакты исправны. При неисправности одно из отверстий не найдет себе «пару». Если же один из контактов прозвонится сразу с несколькими – значит, пришло время менять шлейф, поскольку на старом короткое замыкание.


Микросхема

Выпускается большое разнообразие этих деталей. Замерить и определить неисправность микросхемы с помощью мультиметра достаточно тяжело, наиболее часто используют тестеры pci. Мультиметр не позволяет провести замер, потому что в одной маленькой детали находится несколько десятков транзисторов и других радиоэлементов. А в некоторых новейших разработках сконцентрированы миллиарды компонент.


Определить проблему можно только при визуальном осмотре (повреждения корпуса, изменение цвета, отломанные выводы, сильный нагрев). Если деталь повреждена, ее необходимо заменить. Нередко при поломке микросхемы, компьютер и другие приборы перестают работать, поэтому поиск поломки следует начинать именно с обследования микросхемы.

Тестер материнских плат – это оптимальный вариант определения поломки отдельной детали и узла. Подключив POST карту к материнке и запустив режим тестирования, получаем на экране прибора сведения об узле поломки. Выполнить обследование тестером pci сможет даже новичок, не имеющий особых навыков.

Стабилизаторы

Ответ на этот вопрос, как проверить стабилитрон, знает каждый радиотехник. Для этого переводим мультиметр в положение замера диода. Затем касаемся щупами выходов детали, снимаем показания. Меняем местами щупы и выполняем замер и записываем цифры на экране.

При одном значении порядка 500 Ом, а во втором замере значение сопротивления стремится к бесконечности – эта деталь исправна и годится для дальнейшего использования . На неисправной — величина при двух измерениях будет равна бесконечности – при внутреннем обрыве. При величине сопротивления до 500-сот Ом – произошел полупробой.

Но чаще всего на микросхеме материнской платы сгорают мосты – северный и южный. Это стабилизаторы питания схемы, от которых поступает напряжение на материнку. Определяют эту «неприятность» достаточно легко. Включаем блок питания на компьютере, и подносим руку к материнской плате. В месте поражения она будет сильно нагреваться. Одной из причин такой поломки может быть полевой транзистор моста. Затем проводим прозвонку на их выводах и при необходимости заменяем неисправную деталь. Сопротивление на исправном участке должно быть не более 600 Ом.

Методом обнаружения нагревающего устройства, определяют короткое замыкание (КЗ) на некоторых деталях платы. При подаче питания и обнаружения участка нагрева, кисточкой смазываем место нагрева. По испарению спирта определяется деталь с КЗ.

Очень часто мы сталкиваемся с такой проблемой: из-за поломки небольшой радиодетали выходит из строя целый агрегат. Чтобы как-то облегчить себе жизнь, нужно уметь быстро проверять и устранять поломки. Для этого мы сейчас научимся, как правильно и, главное, быстро проверять радиодетали . Вне зависимости от производителя, будь то импортные, отечественные либо советские радиодетали, принципы и приемы проверки идентичны. Естественно, визуально мы не всегда сможем понять, исправна эта деталь или нет, поэтому нам понадобится мультиметр.

Проверяем биполярные транзисторы.


Самая распространенная поломка-это сгоревшие в схемах транзисторы . Поэтому начнем с них. Чтобы проверить их работоспособность, первым делом «прозваниваем» переходы БАЗА-ЭМИТТЕР и БАЗА-КОЛЛЕКТОР. Следует учитывать, что ПНП транзистор проводит ток к БАЗЕ, а НПН транзистор - от БАЗЫ (ток идет только в одном направлении, в обратном направлении идти не должен). Далее прозваниваем два перехода ЭМИТТЕР-КОЛЛЕКТОР. Пока транзистор закрыт, ток не должен проходить через них в любом направлении. Как только на БАЗУ подали напряжение, ток, проходя через переход БАЗА-ЭМИТТЕР, открывает транзистор , одновременно сопротивление перехода ЭМИТТЕР-КОЛЛЕКТОР резко падает, практически до нуля. Следует учесть, что падение напряжения на переходах обычно не ниже 0,6В (у сборных транзисторов «Дарлингтонов» более 1.2В, в связи с этим мультиметры с батарейкой 1.5В не смогут их открыть). Рекомендую приобрести мультиметр с более мощным элементом питания.

Также следует учесть, что в некоторых современных транзисторах параллельно с цепью КОЛЛЕКТОР-ЭМИТТЕР встроен диод (изучите документацию, если КОЛЛЕКТОР-ЭМИТТЕР прозванивается в одну сторону).

ИТОГ: если хотя бы одно из утверждений не подтвердилось, транзистор неисправен. Перед его заменой проверьте оставшиеся детали.

Проверяем униполярные транзисторы.

Сопротивление между всеми выводами униполярного (полевого) транзистора должно быть бесконечным. Вне зависимости от тестового напряжения прибор должен показывать бесконечное сопротивление. Но имеются некоторые исключения!!!

Прикладывая положительный щуп к затвору n-типа, а отрицательный – к истоку транзистора, емкость затвора зарядится и транзистор откроется. Между стоком и истоком прибор будет показывать некоторое сопротивление. Это не неисправность. Просто перед прозвонкой канала «сток-исток» замкните все ножки транзистора для разрядки емкости затвора. Только после этого, если сопротивление «сток-исток» не бесконечно, транзистор можно считать неисправным.

Следует помнить, что в мощных современных полевых транзисторах между стоком и истоком стоит диод, поэтому при проверке канала «сток-исток» транзистор будет вести себя как обычный диод. Не забывайте читать даташиты к Вашим радиодеталям.

Проверяем конденсаторы.


Одни из самых выходящих из строя радиодеталей – , причем электролитические ломаются чаще, керамика и пленка – наоборот.

Первоначальные наши действия – это визуальный осмотр платы. Электролитические конденсаторы после выхода из строя надуваются, а иногда даже взрываются. Керамические конденсаторы не надуваются, но взорваться могут. Так же, как и электролитические, их надо прозвонить. Ток проводить они не должны.

Следующий шаг, который мы выполняем, – это механическая проверка выводов внутреннего контакта. Для этого сгибаем выводы конденсатора под небольшим углом, слегка потягивая и поворачивая их в разные стороны, убеждаемся в их неподвижности. Если хотя бы один вывод крутится вокруг оси либо свободно вынимается из корпуса, значит он непригоден.

Последнее, что мы делаем, – замеряем сопротивление. При подключении щупов сопротивление от единиц Ом в течение секунды вырастет до бесконечности. При перемене мест щупов эффект повторится. Этот эффект наиболее заметен у емкостью более 10 мкФ.

Теперь мы можем сделать вывод: если конденсатор проводит ток либо не заряжается, он неисправен.

Проверяем резисторы.


Резисторы - это наиболее распространенные на платах радиодетали . Резисторы выходят из строя не так часто, как другие компоненты, да и проверить их намного проще.

Первым делом – визуальный осмотр. Если резистор почерневший (перегретый), то он, вероятнее всего, неисправен, и даже если он исправен, рекомендую его заменить.

Далее – прозвонка. Если сопротивление меньше бесконечности и не равно нулю, скорее всего резистор пригоден к использованию. Замеряем сопротивление, и если оно отличается от номинального больше чем на ±5% , такой резистор лучше заменить.

Проверяем диоды.

Ну, тут вообще все очень просто. Замеряем сопротивление. С плюсом на аноде оно должно показать несколько десятков либо сотен Ом, с плюсом на катоде – бесконечность. В противном случае диод неисправен.

Проверяем индуктивность.

Причины выхода из строя индуктивности – две: первая – короткое замыкание витков, вторая – обрыв.

Обрыв определяем замером сопротивления, оно должно быть меньше бесконечности.

Короткое замыкание вычислить сложнее. Для дросселей и трансформаторов с обмотками не меньше 1000 витков проверяем напряжение самоиндукции. Для этого подаем низковольтный импульс на обмотку и затем замыкаем эту обмотку газоразрядной лампочкой. Импульс требуется подать, слегка касаясь контактов элемента питания. Если лампочка в итоге мигнет, то короткого замыкания нет. В противном случае либо мало витков, либо короткое замыкание.

Конечно, такой способ не совсем точный, поэтому, прежде чем «грешить» на индуктивность, проверьте остальные детали.

Проверяем оптопары.


Сначала прозваниваем излучающий диод. Как и обычный диод, он должен прозваниваться в одну сторону.

Затем, подав питание на излучающий диод, замеряем сопротивление фотоприемника (в зависимости от оптопары, это может быть диод, транзистор, тиристор или симистор). Сопротивление должно быть близким к нулю. Затем убираем питание, если сопротивление выросло до бесконечности, значит исправна.

Проверяем тиристоры (симисторы).

Для проверки берем омметр. Плюс подключаем к аноду, минус к катоду. Сопротивление должно равняться бесконечности. Затем к аноду присоединяем управляющий электрод. Сопротивление должно упасть примерно до сотни Ом. После этого отсоединяем управляющий электрод от анода. Сопротивление должно остаться низким (это называют током удержания). В противном случае отбраковываем.

В следующих статьях мы рассмотрим проверку и выбраковку большинства остальных компонентов.

Прошу обратить внимание: если Вы нашли неисправные радиодетали и хотите их заменить, то мы с радостью поможем найти любые радиодетали и компоненты .

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!