Компьютер. Радиоэлектроника. Блоки питания. Справочники. Источники питания. Радиосвязь

Цоколевка транзистора bcr 50 и его аналоги. Японские биполярные транзисторы - параметры, замена. Справочные данные

Японские биполярные транзисторы - параметры, замена

С трудностями замены вышедших из строя элементов, в частности транзисторов, в зарубежной аппаратуре сталкиваются ремонтники и радиолюбители, занимающиеся ее ремонтом. О проблемах замены японских транзисторов и пойдет речь в публикуемой статье.

В современной бытовой технике применяют широчайшую номенклатуру полупроводниковых приборов самых различных видов. Биполярные транзисторы в этом отношении уверенно доминируют. Несмотря на то, что они в огромных количествах выпускаются электронной промышленностью десятков стран Европы, Америки и Азии, а в последние годы даже Африки и Океании, удельный вес японских разработок и их использования в бытовой радиоэлектронной аппаратуре выше всех остальных вместе взятых. По крайней мере, это касается бытовой техники, продаваемой в СНГ.

В Европе и Америке ситуация возможно иная. Следует иметь в виду, что японскую маркировку и соответственно характеристики имеют транзисторы, выпускаемые и в других странах. Например, южнокорейская компания LG - ELECTRONICS (бывшая GOLD STAR) на принципиальных схемах своей продукции часто употребляет наименования КТС, КТА и др., соответствующие японским 2SC, 2SA и др. На корпусах транзисторов японская и корейская маркировки нередко одинаковы.

Большинство полупроводниковых корпораций Японии, наряду с другими приборами, выпускают и биполярные транзисторы. В настоящее время в их число входят ORIZON DENKI, SANKEN DENKI, SANYO DENKI, SHINDENGEN, TOSHIBA, NEC DENKI, HITACHI, FUJITSU, FUJI DENKI, MATSUSHITA, MITSUBISHI DENKI, ROHM. Предоставленная ими информация вошла в справочник "THE JAPANESE TRANSISTOR DATA MANUAL", изданный в Сингапуре издательством TECH PUBLICATIONS РТЕ LTD. Параметры транзисторов, указанные в этой статье, взяты в основном из него.

Обозначения большинства транзисторов соответствуют требованиям JIS - промышленного стандарта Японии и зарегистрированы в EIAJ - ассоциации электронной промышленности Японии. Биполярные транзисторы часто имеют буквенно-цифровую маркировку, например 2SC780AG. Цифры и буквы разбиты на четыре группы: 1 - 2SC, 2 - 780, 3 - А, 4 - G.

Трехзначное обозначение транзисторов в группе 1 соответствует:

  • 2SA - p-n-р, высокочастотный;
  • 2SB - р-n-р, низкочастотный;
  • 2SC - n-p-n, высокочастотный;
  • 2SD - n-р-n, низкочастотный.

Группа 2 обозначает регистрационный номер EIAJ (от 11 до 9999).

Буква группы 3 соответствует модификации (указывает тип корпуса, коэффициент шума и др.).

Буква в группе 4 обозначает область применения:

  • G - для средств связи;
  • D - для изделий, применяемых корпорацией NTT;
  • N - для изделий, применяемых корпорацией NHK.

Особо следует подчеркнуть, что существует большое число транзисторов, обозначения которых не соответствуют вышеприведенным и устанавливаются самими производителями. В основном это относится к транзисторам с встроенными резисторами, диодами, для монтажа на поверхность, СВЧ, сборкам и другим специализированным типам. Например, фирма NEC для транзисторов с встроенными резисторами при структуре n-р-n использует обозначения АА, АВ, АС, ВА, ВВ, СЕ, FA, FB; при структуре р-n-р - AN, AP, AQ, AR, BN, BP, FN, FD и др. Изделия фирмы RHOM имеют обозначения DTA, DTB, DTC, DTD. Транзисторные сборки фирмы MATSUSHITA - PU, XN; фирмы TOSHIBA - RN, HN и т. д.

При работе с транзисторами следует иметь в виду, что их обозначения в документации и на схемах отличаются от маркировки на корпусах. Так, в маркировке часто отсутствуют первые два-три знака. Например, 2SC3310 - C3310; 2SC3399 - 3399; DTC143 - С143 и т. д. Кроме того, на миниатюрных (для монтажа на поверхность) транзисторах производители наносят маркировку в виде разнообразных кодов (символы, буквы, цифры в различных комбинациях), поэтому разобраться в них без сервисной документации весьма затруднительно.

Группа корпусов, зарегистрированная a EIAJ и JEDEC (американская система обозначений), имеет конструкции и цоколевки, принятые многими производителями (COMMON CONNECTION DIAGRAM). Кроме того, почти все они используют и собственные системы обозначений типов корпусов: SANKEN CONNECTION DIAGRAM, TOSHIBA CONNECTION DIAGRAM и т. д.

Выход из строя транзисторов в бытовой видеотехнике и других видах аппаратуры широкого применения - явление довольно распространенное, поэтому конкретный подбор аналогов для замены вышедших из строя транзисторов приобретает немаловажное значение для обеспечения хорошей работы отремонтированной аппаратуры и ее надежности. В отличие от разработчиков электронной аппаратуры, располагающих полной и точной информацией по применению изделий электронной техники, ремонтники в наших мастерских чаще всего лишены полноценного информационного обеспечения. Во многих случаях отказавшие транзисторы они просто заменяют точно такими же исправными. Приобрести наиболее распространенные транзисторы в крупных городах в последнее время не представляет большой проблемы. Однако часто выходят из строя и отсутствующие в продаже или очень дорогие транзисторы. Вот тут-то для подбора аналогов и необходима информация о параметрах и цоколевках как заменяемых, так и вновь устанавливаемых деталей.

Причины отказов полупроводниковых приборов в основном связаны с перегрузками по мощности рассеяния, току и напряжению. Самую большую группу риска составляют транзисторы, работающие в выходных каскадах строчной и кадровой разверток телевизоров и импульсных источниках питания. Для конкретного подбора аналогов далеко не всегда достаточно только основных параметров, приводимых в различных популярных изданиях и рекламных проспектах торговых фирм.

В публикуемых здесь табл. 1 и 2, по мнению автора, указаны достаточные сведения для подбора мощных импульсных биполярных транзисторов, основное назначение которых - работа в блоках строчной и кадровой разверток телевизоров и мониторов, импульсных блоках питания телевизоров и видеомагнитофонов. Они применяются и в качестве силовых импульсных ключей в самой разнообразной бытовой технике. В табл. 2 приведены сведения из .


(нажмите для увеличения)

В названные таблицы вошли в основном данные о транзисторах, продававшихся на радиорынке г. Ростов-на-Дону весной 1997 г. Поэтому перечисленная номенклатура, конечно, не покрывает и десятой части всего числа типов, выпускаемых японскими фирмами.


К сожалению, в названном выше справочнике не приведена полная информация о наличии в силовых импульсных транзисторах встроенных компонентов (диодов, резисторов и др.). Поэтому в табл. 3 перечислены транзисторы с защитными диодами между коллектором и эмиттером из . Однако там нет информации о наличии защитных резисторов между базой и эмиттером и их номиналах, поэтому для наиболее распространенных транзисторов в табл. 3 указаны сопротивления, непосредственно измеренные универсальным прибором ВУ-15.

Следует отметить, что транзистору 2SA1186 есть комплементарная пара 2SC2837. Кроме того, такие приборы, как 2SD1402, 2SD1403, 2SD1545, 2SD1554, 2SD1555, 2SD1651, 2SD1710, 2SD2331, 2SD2333, S2000AF, имеют граничную частоту коэффициента передачи тока 3 МГц, 2SC4517 - 6 МГц, BU508A и BU508DF - 7 МГц, a 2SC2023 (при Uкэ = 12 В и lK = 0,2 А) и BUT11 АХ - 10 МГц.

Рассмотрим некоторые общие подходы к ремонту бытовой техники, связанные с заменой силовых биполярных транзисторов. Степень сложности ремонта в наших условиях можно классифицировать так:

1. Простой - на корпусе неисправного транзистора имеется четкая маркировка, однозначно определяющая его тип; такой прибор не дорог и всегда имеется в продаже.

2. Средней сложности - искомый транзистор, хотя тип его известен, очень дорог или дефицитен, в то же время о нем имеется справочная информация в указанной литературе.

3. Сложный - невозможно определить тип транзистора или отсутствуют справочные сведения о нем, нет в наличии на местном рынке электронных компонентов.

Описание простых случаев ремонта вряд ли интересно читателям, поскольку фирмы, торгующие транзисторами (включая радиорынки крупных городов), постоянно имеют в ассортименте наиболее ходовые приборы, такие как 2SC3979, 2SC4517, 2SD1555, 2SD1710, BUT11, BU50B, BU2508 и др. по цене 1...3 долл.

А вот случаи сложного ремонта и средней сложности вполне заслуживают описания, так как отсутствие нужных транзисторов или информации по их применению надолго задерживают ремонт наиболее редких и дорогих видов бытовой техники.

Прежде всего, отметим, что по многим причинам подбор подходящих отечественных аналогов мощных импульсных транзисторов для замены неисправных импортных сделать не так просто. Не в последнюю очередь это связано с отсутствием подходящих по параметрам отечественных транзисторов в пластмассовых и миниатюрных корпусах. Исключением можно назвать, пожалуй, только транзисторы в металлических корпусах ТО-3, имеющие отечественные аналоги. Например, перечисленные в табл.1 приборы 2SC1942, 2SC3026 можно заменить на КТ838А, имеющий даже лучшие параметры , причем их размеры и цоколевки полностью совпадают.

Несмотря на большое разнообразие типов корпусов мощных импульсных транзисторов, многие из них имеют близкие габаритные и присоединительные размеры, что при соблюдении определенных требований позволяет корректно их заменять. На рис. 1 показаны цоколевки транзисторов, перечисленных в табл. 1 и 2. Различные типы корпусов, близких по присоединительным размерам, сгруппированы и показаны одним рисунком. В действительности каждый корпус имеет индивидуальные особенности. Однако для выбора аналогов это не имеет большого значения. Важно только учитывать, изолирован ли транзистор полностью, имеет ли изоляционную втулку в креплении или коллектор транзистора электрически соединен с теплоотводящей пластиной корпуса.


Обратим внимание на некоторые характерные случаи замены транзисторов с различными корпусами. Например, неисправный прибор выполнен в изолированном корпусе, аналог не изолирован, но имеет пластиковую втулку в креплении. Здесь достаточно установить слюдяную или фторопластовую прокладку под корпус транзистора. Дополнительная изоляция винта крепления требуется для аналогов без изолирующей втулки. В ситуации, когда неисправный транзистор в неизолированном корпусе заменяют на "пластмассовый", необходимо оценить эффективность теплоотвода, так как температура кристалла изолированных транзисторов при одинаковых условиях будет выше, чем у их "металлических" аналогов.

Другие нюансы, возникающие при замене, такие как малая длина выводов и т. п., при проведении ремонта мало существенны и легко преодолимы. Основная проблема все же - выбор аналогов с нужными электрическими параметрами. Следует, однако, отметить, что, несмотря на большое число выпускаемых типов транзисторов, аналогов, у которых близки все или большинство измеряемых параметров, встречается не так уж много. Поэтому необходимо определять, какие из параметров имеют первостепенное значение, а какие вообще учитывать не обязательно. Сделать такие выводы можно, только имея достаточно четкое представление о конкретных условиях и схемах включения, в которых работает заменяемый транзистор.

Перейдем к конкретным ситуациям, наиболее часто встречающимся в ремонтной практике. В первую очередь, это касается подбора аналогов транзисторов для выходных каскадов импульсных блоков питания телевизоров, видеомагнитофонов и другой бытовой техники. В импульсных блоках питания видеомагнитофонов AKAI VS-G205, VS-G405, VS-G411, VS-G415, VS-G417, VS-G418, VS-G511 и др. применен ключевой транзистор 2SC4304 фирмы SANKEN, выполненный в изолированном корпусе FM20 (на время написания статьи транзистор отсутствовал в продаже и не включен в таблицы). К параметрам, на которые следует обратить внимание при подборе аналогов, относятся: Uкэ max = 800 В, lк max = 3 А, Рк max = =35 Вт, h21э min = 10 (при lк = 0,7 A), tвкл max = 0,7 МКС, tвыкл max = 4,7 МКС, UKэ нас min = 0,5В(при Iк = 0,7А).

От быстродействия транзистора (tвкл / tвыкл, на рис. 2 показано, по какой схеме включения и как они определяются) зависит КПД преобразователя. Чем короче переходные процессы, тем меньше мощность, рассеиваемая на транзисторе. Поэтому замена на существенно менее быстродействующий, хотя и восстанавливает работоспособность аппарата, нередко приводит к повторным отказам из-за перегрева корпуса.


Напряжение насыщения UKэнас в некоторой степени влияет на значение максимального импульсного тока транзистора и, следовательно, на мощность, отдаваемую в нагрузку, особенно при пониженном сетевом напряжении. Поэтому иногда транзисторы с большим UKэ нас "не тянут", т. е. блок питания не развивает необходимую мощность (для конкретной схемы включения).

Из транзисторов в изолированных корпусах (перечисленных в таблицах) "кандидатами" на замену можно назвать 2SC3559, 2SC3866, 2SC3979 (встречаются и исполнения в "металле"). Потребляемая мощность выше названных видеомагнитофонов AKAI не превышает 19 Вт, и если КПД блока питания принять равным 75%, то мощность, рассеиваемая на ключевом транзисторе, не превышает 5 Вт, что значительно меньше предельно допустимой для всех предполагаемых аналогов. Остальные их параметры весьма близки, поэтому для замены пригоден любой из них (более высокое UKэ нас У 2SC3979 в нашем случае не имеет особого значения по причине небольшого токопотребления).

Самый дешевый и доступный аналог - 2SC3979. Правда, применим и более дешевый BUT11AX, но, к сожалению, отсутствие у автора полных справочных сведений по нему не позволяет его рекомендовать (хотя на практике ремонтники в подобных случаях широко используют транзисторы BUT11, BUT11А, BUT11AF,BUT11AX).

В предвыходном каскаде рассматриваемого блока питания применен дефицитный транзистор 2SD2132 фирмы RHOM, отличающийся низким сопротивлением "открытого ключа" ROTKp = 0,8 Ом (при IБ = 1 мА), h21э = 560...2700 и высоким быстродействием fT = 350 МГц. Для замены подойдет распространенный 2SC4204 или 2SC3246.

Не менее широкое применение нашли мощные импульсные транзисторы в выходных каскадах блоков строчной развертки телевизоров и мониторов. В телевизорах FTM536, FTM542, FTM551 фирмы FISHER в блоке развертки применен дефицитный транзистор 2SD1425, выпускаемый фирмой TOSHIBA. Он выполнен в неизолированном корпусе 2-16D3A с пластиковой втулкой и имеет следующие параметры:

UKэ max = 600 В, Iк max = 2,5 А, Рк = 80 Вт, h21э min = 8, UKэ нас = 8 В, fT = 3 МГц.В него встроен резистор сопротивлением 36 Ом между базой и эмиттером, а в некоторых исполнениях - и защитный диод между коллектором и эмиттером. Полноценные недефицитные аналоги 2SD1426, 2SD1427, 2SD1428 отличаются только большим Iк max (3,5; 5 и 6 А соответственно).

Из таблиц видно, что по электрическим параметрам для замены подходят и многие другие транзисторы, но выполненные в изолированных корпусах или без защитных диодов и резисторов. Это обстоятельство нужно обязательно учитывать, устанавливая при необходимости дополнительные диоды и резисторы и ориентируясь на конкретную схему включения.

Для обеспечения высокой надежности особо важно напряжение UKэ max , а не обычно указываемое в популярных справочниках UKб max. которое для рассматриваемых транзисторов всегда больше. Поэтому следует с осторожностью относиться к фразам вроде "транзистор на 1500 В", так как обычно имеют В ВИДУ Ukб max.

Как видно из таблиц, для транзисторов "на 1500 В" сами производители допускают Uкэ max, равное 600...800 В. С этой точки зрения лучшими по надежности будут транзисторы 2SD1402, 2SD1403, 2SD1651, 2SD1877, 2SD1878, 2SD1887 фирмы SANYO (из числа вошедших в таблицу).

Специфические трудности возникают при подборе транзисторов для видеокамер, поскольку во многих случаях трудно определить даже тип прибора (биполярный, полевой, n-p-n, р-n-р и др.) и его конкретное наименование. Непросто найти и справочные данные. Ниже указаны параметры ключевых транзисторов преобразователя напряжения, применяемого в широко распространенных у нас камкордерах PANASONIC: NV-M3000, NV-M9000, NV-MS4E, AG455 и др.

Q1001, Q1003 - 2SB1202 (р-n-р): Uкэ max = 50В, lK max = 3 А, Рк = 1 Вт. h21Э = 100...560, Uкэ нас = 0,7 В, tвкл = 0,07 мкс, tвыкл = 0,48 мкс, корпус - SC-64 (SANYO).

Q1004 - 2SD1624 (n-р-n): Uкэ max = 50 В, lK max = 3 А, Рк = 0,5 ВТ, h21Э = 100...560,Uкэ нас = 0,5 В,tвкл = 0,07мкс, tвыкл = 1 мкс, корпус - SC-62 (SANYO).

Основная трудность при замене этих транзисторов связана с их миниатюрностью. Доступные транзисторы с подходящими параметрами трудно разместить в очень малом объеме под экраном преобразователя напряжения, а расположение их вне экрана недопустимо из-за большого уровня создаваемых помех (рабочая частота преобразователя - около 500 кГц).

В рассматриваемом случае транзистор 2SB1202 можно заменить на менее дефицитные 2SA1241, 2SA1244 (оба в корпусе SC-64), 2SA1020 (корпус ТО-92MOD), 2SB892 (корпус SC-51), а также на отечественные 2Т836А, которые отличаются несколько меньшими быстродействием (tвкл = 0,3 мкс) и коэффициентом передачи тока (h21Э = 80... 125).

Сравнительно недефицитный транзистор 2SD1207 в корпусе SC-51 можно считать близким аналогом 2SD1624. Реально применение и отечественных КТ630Д, КТ630Е, хотя в этом случае требуется небольшая конструктивная доработка преобразователя напряжения (увеличение высоты стоек крышки экрана).

В заключение приведем пример замены выходных транзисторов блоков кадровой развертки телевизоров. В современных аппаратах они выполнены преимущественно на специализированных микросхемах, а дискретные транзисторы использованы в моделях 70 - 80-х годов. Выходной каскад кадровой развертки телевизора HITACHI - CR415 (кинескоп 370САВ22, 37 см по диагонали) выполнен на комплементарной паре транзисторов 2SB546 (р-n-р) и 2SD401 (n-р-n), характеризующихся Uкэ max= 150 В, IKmax = 2 А, Рк = 25 Вт, h21Э = 40...200, fT = = 5 МГц, Uкэ нас = 1 В, IКБ обр = 50 мкА, корпус - ТО-220 АВ. Транзисторы мало распространены, поэтому дефицитны. Однако они практически полностью эквивалентны отечественным КТ850В (n-р-n) и КТ851В (р-n-р) и, естественно, легко могут быть ими заменены.

Литература

  1. Морита А. Сделано в Японии. - М.: Изд. группа "Прогресс". - "Универс", 1993, с. 111-118.
  2. Биполярные транзисторы. - Электронные компоненты, 1996, № 1, с. 41 -44.
  3. Транзистор КТ838 А. - Радио, 1994, № 3, c. 4; № 4, с. 45.

Цветовая и кодовая маркировка транзисторов

В цветовой и кодовой маркировке транзисторов нет единых стандартов. Каждый завод, который производит транзисторы, принимает свои цветовые и кодовые обозначения. Вы можете встретить транзисторы одного типа и группы, которые изготовлены разными заводами и маркируются по-разному, или разные транзисторы, которые марки-руются одинаково. В этом случае их можно отличить только по некоторым до-полнительным признакам, таким как длина выводов коллектора и эмиттера или окраска торцевой (противоположной выводам) поверхности транзистора.

Табл. 8.13. Цветовая и кодовая маркировка транзисторов в корпусе КТ-26.

Цветовая маркировка транзисторов осуществляется двумя точками. Тип транзи-стора обозначается на боковой поверхности, а маркировка группы на торцевой (рис. 8.2).

Кодовая маркировка наносится на боковую поверх-ность транзистора (рис. 8.2). Тип транзистора обозначается кодовым знаком (табл. 8.13), а группа - соответствующей буквой. Дата изготовления в соответствии с ГОСТ 26486-82 кодируется двумя буквами или буквой и цифрой (табл. 8.14). Первая буква обознача-ет год выпуска, а следующая за ней цифра или буква - месяц. Кодированное обозначение даты изготовления применяется не только для транзисторов, но и для других радиоэлементов. На рис. 8.3 приведены примеры кодовой и цветовой маркировки транзисторов в корпусе КТ-26.

Транзисторы в корпусе КТ-27 могут маркироваться или буквенно - цифровым кодом (табл. 8.16 и рнс. 8.4) или ко-дом, состоящим из геометриче-ских фигур (рис. 8.4).

Транзисторы в корпусе КТ-27 дополнительно маркиру-ются окрашиванием торца кор-пуса, противоположного выводам: КТ814 - серо - бежевый;

КТ815 - серый нлн снренево - фиолетовый;

КТ816 - розово - красный;

КТ817 - серо - зелёный;

КТ683 - фиолетовый;

КТ9115 - голубой.

Транзисторы КТ814Б, КТ815Б, КТ816Б и КТ817Б иногда маркируются только окрашиванием торцевой поверхности без нанесения буквенно - цифрового кода.

Примеры маркировки транзисторов в корпусе КТ-13 приведены на рис. 8.6. Буква группы у транзисторов КТ315 наносится сбоку поверхности, а КТ361 - посередине.

Тип транзисторов КПЗОЗ и КП307 в корпусе КТ-1-12 маркируются соот-ветственно цифрами 3 и 7, группа - соответствующей буквой. Транзисторы КП327А маркируются одной белой точкой, а КП327Б - двумя (рис. 8.3).



Иногда бывают ситуации, когда необходимо определить выводы транзистора, где находится база, коллектор и эмиттер, а справочной информации об этом под рукой нет. Но здесь нет ничего сложного если под рукой есть мультиметр или тестер.

Итак , как определить выводы у транзистора, базу, коллектор и эмиттер мультиметром?

В первую очередь, нужно определить вывод базы. Для этого плюсовым (красным) щупом мультиметра касаемся, одного из выводов транзистора, например левого, а минусовым (черным) касаемся остальных выводов. При этом смотрим, какую величину сопротивления показывает мультиметр. Затем касаемся плюсовым среднего вывода, а минусовым левого и правого. Продолжаем менять местами щупы до тех пор пока не найдем такое положение щупов, при котором касаясь щупом одного из выводов, а другим двух остальных, мультиметр будет показывать некоторое сопротивление.


Например на фотографии видно, что касаясь плюсовым щупом среднего вывода, а минусовым левого и правого, мультиметр показывает сопротивление переходов.

Отсюда делаем вывод, от то базой данного транзистора является средний вывод.

Теперь анализируя значение сопротивлений переходов нетрудно определить где у транзистора находится эмиттер. Дело в том, что значения сопротивлений база — эмиттер и база — коллектор неодинаковое. У перехода база — эмиттер это значение будет больше. На фотографии видно, что между базой (средний вывод) и правым выводом сопротивление перехода больше, значит это и есть эмиттер.

У транзисторов имеющих теплоотвод для установки на радиатор, вывод коллектора напрямую связан с корпусом и находится в середине между базой и эмиттером. Зная расположение коллектора, базу и эмиттер определить будет и вовсе легко.

Отсюда можно определить, что это за транзистор (его структуру), p-n-p (прямой) или n-p-n (обратный). База определилась плюсовым выводом

Поступил вопрос от нашего читателя:

А что будет, если перепутать вывод "коллектор" и "эмиттер" местами? Транзистор ведь симметричный!? NPN и PNP. Значит неважно, где у него коллектор, а где эмиттер?

Очень интересный вопрос. Ну что же, начнем...

Для опыта мы возьмем простой и всеми нами любимый транзистор КТ815Б:

Соберем знакомую вам схемку:



Для чего я поставил перед базой резистор, читаем .

На Bat1 выставляю напряжение в 2,5 вольта. Если подавать более 2,5 Вольт, то лампочка уже ярче гореть не будет. Скажем так, это граница, после которой дальнейшее повышение напряжение на базе не играет никакой роли на силу тока в нагрузке



На Bat2 я выставил 6 Вольт, хотя лампочка у меня на 12 Вольт. При 12 Вольтах транзистор у меня ощутимо грелся, и я не хотел его спалить. Здесь мы видим, какую силу тока потребляет наша лампочка и даже можем рассчитать мощность, которую она потребляет, перемножив эти два значения.



Ну и как вы видели, лампочка горит и схема нормально работает:



Но что случится, если мы перепутаем коллектор и эмиттер? По логике, у нас ток должен течь от эмиттера к коллектору, потому как базу мы не трогали, а коллектор и эмиттер состоят из N полупроводника.



Но на практике лампочка гореть не хочет.



Потребление на блоке питания Bat2 каких-то 10 миллиАмпер. Значит, ток через лампочку все-таки течет, но очень слабый.



Почему при правильном подключении транзистора ток течет нормально, а при неправильном нет? Дело все в том, что виноват сам конструктив транзистора



В транзисторах площадь соприкосновения коллектора с базой намного больше, чем эмиттера и базы. Поэтому, когда электроны устремляются из эмиттера к коллектору, то почти все они "ловятся" коллектором, а когда мы путаем выводы, то не все электроны из коллектора "ловятся" эмиттером.

Кстати, чудом не пробило P-N переход эмиттер-база, так как напряжение подавали в обратной полярности. Параметр в даташите U ЭБ макс . Для этого транзистора критическое напряжение считается 5 Вольт, у нас же оно было даже чуть выше:



Итак, мы с вами узнали, что коллектор и эмиттер неравнозначны . Если в схеме мы спутаем эти выводы, то может произойти пробой эмиттерного перехода и транзистор выйдет из строя. Так что, не путайте выводы биполярного транзистора ни в коем случае!

Но как определить точно, где у него какой вывод? Для этого есть несколько способов.

Первый способ

Думаю, самый простой. Скачать на этот транзистор даташит. В каждом нормальном даташите есть рисуночек с подробными надписями, где какой вывод. Для этого вводим в гугл или яндекс крупненькие циферки и буковки, которые написаны на транзисторе, и рядышком добавляем слово "даташит". Пока еще не было такого, чтобы я не отыскивал даташит на какой-то радиоэлемент.

Второй способ.

Думаю, с поиском вывода базы проблем возникнуть не должно, если учесть, что транзистор состоит из двух диодов, включенных последовательно или катодами, или анодами:





Здесь все просто, ставим мультиметр на значок прозвонки " )))" и начинаем пробовать все вариации, пока не найдем эти два диода. Вывод, где эти диоды соединяются либо анодами, либо катодами - это и есть база. Чтобы найти коллектор и эмиттер, сравниваем падение напряжение на этих двух диодах. Между коллектором и базой ом оно должно быть меньше, чем между эмиттером и базой. Давайте проверим, так ли это?

Для начала рассмотрим транзистор КТ315Б:

Э - эмиттер

К - коллектор

Б - база

Ставим мультиметр на прозвонку и базу находим без проблем. Теперь замеряем падение напряжения на обоих переходах. Падение напряжения на базе-эмиттере 794 миллиВольт



Падение напряжения на коллекторе-базе 785 миллиВольт. Мы убедились, что падение напряжения между коллектором и базой меньше, чем между эмиттером и базой. Следовательно, средний синий вывод - это коллектор, а красный слева - эмиттер.



Проверим еще транзистор КТ805АМ. Вот его цоколевка (расположение выводов):



Это у нас транзистор структуры NPN. Предположим, базу нашли (красный вывод). Узнаем, где у него коллектор, а где эмиттер.

Делаем первый замер.



Делаем второй замер:



Следовательно, средний синий вывод - это коллектор, а желтый слева - эмиттер.

Проверим еще один транзистор - КТ814Б. Он у нас PNP структуры. База у него - синий вывод. Замеряем напряжение между синим и красным выводом:



а потом между синим и желтым:



Во фак! И там и там 720 миллиВольт.

Этот способ этому транзистору не помог. Ну не переживайте, для этого есть третий способ...

Третий способ.

Почти в каждом современном мультиметре есть 6 маленьких отверстий, и рядом какие-то буковки, что-то типа NPN, PNP, E, C, B. Вот эти шесть крохотных отверстий как раз и предназначены для того, чтобы замерять коэффициент бета . Я же эти отверстия буду называть дырками. На отверстия они не очень похожи))).

Ставим крутилку мультиметра на значок "h FE ".

Определяем какой он проводимости, то есть NPN или PNP, в такую секцию его и толкаем. Проводимость определяем расположением диодов в транзисторе, если не подзабыли. Берем наш транзистор, которые в обе стороны показал одинаковое падение напряжения на обоих P-N переходах, и суем базу в ту дырочку, где буковка "В".





Базу не трогаем, а тупо меняем местами два вывода. Опа-на, мультик показал намного больше, чем в первый раз. Следовательно, в дырочке Е находится в настоящее время эмиттер, а в дырочке С - коллектор. Все элементарно и просто;-).



Четвертый способ

Думаю, является самым легким и точным способом проверки распиновки транзистора. Для этого достаточно приобрести Универсальный R/L/C/Transistor-metr и сунуть выводы транзистора в клеммы прибора:



Он сразу вам покажет, жив ли ваш транзистор. И если он жив, то выдаст его распиновку.

Сделаем глубокомысленные выводы из всего выше сказанного и показанного.

Выводы транзистора путать нежелательно. Если обратное напряжение на переходе база-эмиттер превысит допустимое, то транзистор может крякнуть. Чтобы найти базу и проводимость транзистора, достаточно узнать расположение диодов, из которых он состоит. Для того, чтобы узнать расположение других двух выводов, можно воспользоваться описанием на транзистор (этот способ железный), замерять падение напряжения но обоих переходах (на коллектор-базе оно меньше), либо воткнуть транзистор в колодку мультиметра, для измерения коэффициента бета (при верной цоколевке коэффициент бета будет больше).

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!