Компьютер. Радиоэлектроника. Блоки питания. Справочники. Источники питания. Радиосвязь

Блок питания на 13003 схема. Простой импульсный блок питания из энергосберегающей лампы

Выход из строя батареи аккумуляторного шуруповерта или другого электроинструмента – событие не самое приятное, особенно если учесть, что стоимость замены этого элемента соизмерима с ценой нового прибора. Но быть может, незапланированных расходов удастся избежать?

Это вполне возможно, если заменить аккумулятор простеньким самодельным блоком питания импульсного типа, с помощью которого инструмент можно будет запитывать от сети. А комплектующие для него можно найти в доступном и повсеместно распространенном изделии – люминесцентной (иначе - энергосберегающей) лампе.

Согласно , в цоколе каждой из них предусмотрен так называемый электронный балласт – миниатюрная схема, предотвращающая мигание лампы во время включения и обеспечивающая постепенный разогрев катодных спиралей. Благодаря ей находящийся в колбе газ испускает свечение с частотой от 30 до 100 кГц.



КЛЛ в разобранном виде

Вид люминесцентной лампочки изнутри

Устройство энергосберегающей лампы на примере изделия от Camelon

Работа на столь высоких частотах значительно увеличивает коэффициент энергопотребления, доводя его практически до единицы, чем и обусловлена высокая экономичность ламп данного типа. Дополнительными преимуществами высокочастотного электричества является отсутствие воспринимаемого человеческим ухом шума и электромагнитного поля.

В зависимости от того, как спроектирован , она может сразу загораться с полным накалом, либо выходить на максимальную яркость постепенно. Иногда для этого требуется одна или две минуты, что, конечно, не очень удобно. Время разогрева лампы производителями не указывается, и покупатель имеет возможность проверить его, только начав пользоваться изделием.

Подавляющая часть балластных схем, по сути, являющихся преобразователями напряжения , собирается на полупроводниковых транзисторах. В дорогих лампах применена более сложная схема, в дешевых – упрощенная.

Вот чем можно поживиться, имея на руках годную или перегоревшую люминесцентную лампу:

  • биполярные транзисторы, рассчитанные на напряжение до 700 В и токи до 4 А, часто уже с защитными диодами (D4126L или аналогичные);
  • полевые транзисторы (встречаются довольно редко);
  • импульсный трансформатор;
  • дроссель;
  • двунаправленный динистор, аналогичный сдвоенному динистору КН102;
  • конденсатор на 10/50В.

Некоторые виды электронного балласта энергосберегающих ламп при сборке самодельного блока питания выступают не просто источником комплектующих, но представляют собой значительную часть схемы, которую остается только немного дополнить и изменить.

Не очень удачными считаются преобразователи, имеющие в своем составе электролитические конденсаторы. Именно эти элементы особенно часто становятся причиной поломок в электронных устройствах.

Неподходящим окажется балласт, в схему которого включена специализированная микросхема.

Импульсный блок питания и его особенности

В импульсный блок питания (ИБП) преобразование электрической энергии происходит по следующей схеме :

  1. Выпрямитель входной (диодный мост + конденсатор) преобразует входной ток из переменного в постоянный.
  2. Инвертор преобразует поступающий с входного выпрямителя постоянный ток снова в переменный, но уже с частотой выше 10 кГц, то есть исходная частота тока (50 Гц) повышается более, чем в 200 раз.
  3. Переменный высокочастотный ток поступает на импульсный трансформатор, который понижает или повышает напряжение.
  4. Выходной выпрямитель превращает переменный ток с требуемыми параметрами, но высокой частотой, в постоянный.

Главная особенность этого способа преобразования электроэнергии состоит в существенном увеличении частоты переменного тока, поступающего на трансформатор. Это позволяет сделать его значительно более компактным, чем он был бы при частоте в 50 Гц. Но малые размеры – это не единственное преимущество импульсных блоков перед линейными.



ИБП на IR2153/2155
ИБП, выполненные с применением современных технологий, практически не имеют энергопотерь, в то время как линейные блоки рассеивают определенную долю энергии на дырочно-электронном переходе транзистора.

Работа инвертора, преобразующего постоянный ток высокочастотный переменный, основана на применении MOSFET-транзисторов, для которых характерна высокая скорость переключения. Быстродействующими должны быть и диоды, устанавливаемые в мосту выходного выпрямителя.

Обычные диоды с током, имеющим частоту выше 10 кГц, работать не смогут. Широко используются диоды Шоттки, которые, в отличие от кремниевых диодов, теряют очень малую долю энергии, работая на высокой частоте.

При низком выходном напряжении роль выпрямителя может играть транзистор. Еще вариант – замена трансформатора дросселем. Подобные схемы встречаются в самых простых преобразователях.

ИБП из лампы своими руками

В большинстве случаев для сборки ИБП электронный дроссель следует лишь немного изменить (при двухтранзисторной схеме) за счет перемычки, а затем подключить к импульсному трансформатору и выпрямителю. Некоторые компоненты просто удаляются за ненадобностью.



Блок питания самодельный

Для слабых блоков питания (от 3.7 в до 20 ватт), можно обойтись без трансформатора. Достаточно будет добавить несколько витков провода на магнитопровод имеющегося в балласте лампы дросселя, если, конечно, там есть для этого место. Новую намотку можно делать прямо поверх существующей.

Для этого отлично подойдет провод марки МГТФ с изоляцией из фторопласта. Обычно провода требуется мало, при этом почти весь просвет магнитопровода занимает изоляция, что и обуславливает малую мощность таких устройств. Чтобы увеличить ее, понадобится импульсный трансформатор.

Импульсный трансформатор

Особенностью описываемого варианта ИБП является способность до некоторой степени подстраиваться под параметры трансформатора, а также отсутствие цепи обратной связи, проходящей через этот элемент. Такая схема подключения позволяет обойтись без особо точного расчета трансформатора.

Как показала практика, даже при грубых ошибках (допускались отклонения свыше 140%) ИБП получался работоспособным.

Трансформатор изготавливается на базе все того же дросселя, на котором наматывается вторичная обмотка из лакированного обмоточного медного провода. При этом важно уделить особенное внимание межобмоточной изоляции из бумажной прокладки, ведь «родная» обмотка дросселя будет работать под сетевым напряжением.

Даже если она покрыта синтетической защитной пленкой, поверх нее все-равно необходимо намотать несколько слоев электрокартона или хотя бы обычной бумаги общей толщиной 100 мкм (0,1 мм), а уже поверх бумаги можно укладывать лакированный провод новой обмотки.

Диаметр провода должен быть наибольшим из возможных. Витков во вторичной обмотке будет не много, поэтому их оптимальное количество можно будет подобрать опытным путем.

Используя указанные материалы и технологию можно получить блок питания мощность 20 или чуть более ватт. В данном случае ее значение ограничивается площадью окна магнитопровода и, соответственно, максимальным диаметром провода, который удается там разместить.

Выпрямитель

Во избежание насыщения магнитопровода в ИБП применяют только двухполупериодные выходные выпрямители. В том случае, если импульсный трансформатор работает на понижение напряжения, наиболее экономичной является схема с нулевой точкой, но для ее реализации понадобится сделать две полностью симметричные вторичные обмотки. При ручной намотке можно выполнить обмотку в два провода.

Стандартный выпрямитель, собранный по схеме «диодный мост» из обычных кремниевых диодов, для импульсного ИБП не подходит, поскольку из 100 Вт передаваемой мощности (при напряжении 5 В) на нем будет теряться около 32 Вт или более. Собирать же выпрямитель на мощных импульсных диодах будет слишком дорого.

Наладка ИБП

После сборки ИБП его необходимо подключить к максимальной нагрузке и проверить, насколько сильно греются транзисторы и трансформатор. Предел для трансформатора – 60 – 65 градусов, для транзисторов – 40 градусов. При перегреве трансформатора увеличивают сечение провода или габаритную мощность магнитопровода, либо выполняют оба действия совместно. Если трансформатор сделан из дросселя балласта лампы, увеличить сечение провода, скорее всего, уже не получится и придется ограничивать подключаемую нагрузку.

Вариант ИБП с повышенной мощностью

Иногда стандартной мощности электронного балласта лампы бывает недостаточно. Представим себе ситуацию: имеется лампа мощностью 23 Вт, а необходимо получить источник питания для зарядного устройства с параметрами 12В/8А.

Для того чтобы осуществить задуманное, придется раздобыть компьютерный блок питания, оказавшийся по каким-либо причинам невостребованным. Из этого блока следует изъять силовой трансформатор вместе с цепочкой R4C8 , которая выполняет функцию защиты силовых транзисторов от перенапряжения. Силовой трансформатор следует присоединить к электронному балласту вместо дросселя.



Схема сборки ИБП из энергосберегающей лампочки

Опытным путем было установлено, что данный тип ИБП позволяет снимать мощность до 45 Вт при незначительном перегреве транзисторов (до 50 градусов).

Чтобы избежать перегрева, в базах транзисторов необходимо установить трансформатор с увеличенным сечением сердечника, а сами транзисторы установить на радиатор.

Возможные ошибки

Как уже говорилось, включение в схему в качестве выходного выпрямителя обычного низкочастотного диодного моста нецелесообразно, а при повышенной мощности ИБП делать этого тем более не стоит.

Также бессмысленно пытаться ради упрощения схемы наматывать базовые обмотки непосредственно на силовом трансформаторе. В отсутствие нагрузки будут иметь место значительные потери из-за того, что в базы транзисторов будет поступать ток максимальной величины.

Применяемый трансформатор с увеличением тока нагрузки увеличивает и ток в базах транзисторов. Практика показывает, что при достижении мощностью нагрузки значений в 75 Вт в магнитопроводе трансформатора имеет место насыщение. Это приводит к ухудшению характеристик транзисторов и их перегреву.

Во избежание этого можно самому намотать трансформатор тока, в два раза увеличив сечение сердечника или сложив вместе два кольца. Также можно в два раза увеличить диаметр провода.

Существует способ избавиться от базового трансформатора, выполняющего промежуточную функцию. Для этого токовый трансформатор через мощный резистор подключают к отдельной обмотке силового, реализуя схему обратной связи по напряжению. Недостатком данного варианта является то, что токовый трансформатор при этом постоянно работает в режиме насыщения.

Нельзя подключать трансформатор параллельно с имеющимся в балластном преобразователе дросселем. Вследствие уменьшения суммарной индуктивности будет увеличена частота блока питания. Такое явление приведет к увеличению потерь в трансформаторе и перегреву транзисторов выходного выпрямителя.

Следует учитывать повышенную чувствительность диодов Шоттки к превышению значения обратных напряжения и тока. Попытка установить, скажем, 5-вольтовый диод в 12-вольтовую схему, скорее всего, приведет к выходу элемента из строя.

Не пытайтесь заменить транзисторы и диоды отечественными, например, КТ812А и КД213. Это однозначно приводит к ухудшению рабочих характеристик устройства.

Подключение ИБП к шуруповерту

Электроинструмент необходимо разобрать, отвинтив все шурупы. Обычно корпус шуруповерта состоит из двух половинок. Далее следует найти провода, которыми двигатель подключается к батарее. Соединить эти провода с выходом ИБП можно с помощью пайки или термоусадочной трубки, вариант со скрутками нежелателен.

Для ввода провода от блока питания в корпусе инструмента необходимо выполнить отверстие. Важно предусмотреть меры, предотвращающие вырывание провода в случае неосторожных движений или случайных рывков. Самый простой вариант – обжать провод внутри корпуса у самого отверстия клипсой из сложенного пополам коротенького отрезка мягкой проволоки (подойдет алюминий). Имея превосходящие диаметр отверстия размеры, клипса не даст проводу оторваться и выпасть из корпуса в случае рывка.

Как видно, энергосберегающая лампочка, даже отработавшая положенный ей срок, может принести немалую пользу своему владельцу. Собранный на базе ее комплектующих ИБП может с успехом применяться в качестве источника энергии для аккумуляторного электроинструмента или зарядного устройства.

Люминесцентная лампа является довольно сложным механизмом. В конструкции энергосберегающих ламп находится множество разных мелких составляющих, которые в совокупности и обеспечивают то освещение, которое выдаёт такое устройство. Основой всей конструкции энергосберегающих устройств является стеклянная трубка, которая наполнена парами ртути и инертным газом.

Импульсный блок и его назначение

С обоих концов этой трубки установлены электроды, катод и анод. После подачи на них тока, они начинают нагреваться. Достигнув необходимой температуры они выпускают электроны, которые ударяются об молекулы ртути и та начинает излучать ультрафиолетовый свет.

Ультрафиолет конвертируется в видимый для человеческого глаза спектр благодаря люминофору, который находится в трубке. Таким образом, лампа зажигается спустя некоторое время. Обычно скорость загорания лампы зависит от срока её выработки. Чем дольше лампа работала, тем больше будет промежуток между включением и полным зажиганием.

Чтобы понять предназначение каждой из составляющих ибп, следует разобрать по отдельности какие функции они выполняют:

  • R0 – работает ограничителем и предохранителем блока питания. Он стабилизирует и останавливает излишний поток питания тока в момент включения, который протекает через диоды выпрямляющего устройства.
  • VD1, VD2, VD3, VD4 – используются как мостовые выпрямители.
  • L0, C0 – фильтруют подачу тока и делают её без перепадов.
  • R1, C1, VD8 и VD2 – запускная цепь преобразователей. Процесс запуска происходит следующим образом. Источник зарядки конденсатора С1 является первый резистор. После того как конденсатор набирает такой мощности, что способен пробить динистор VD2, он самостоятельно открывается и попутно открывает транзистор, что вызывает автоколебание в схеме. Затем прямоугольный импульс направляется на катод диода VD8 и возникающий минусовый показатель закрывает второй динистор.
  • R2, C11, C8 – делают стартовый процесс преобразователей более лёгким.
  • R7, R8 – Делают закрытие транзисторов более эффективным.
  • R6, R5 – создают границы для тока на базах каждого транзистора.
  • R4, R3 – работают как предохранители в случае резкого повышения напряжения в транзисторах.
  • VD7 VD6 – предохраняют каждый транзистор бп от возвратного тока.
  • TV1 – обратный трансформатор для связи.
  • L5 – дроссель балластный.
  • C4, C6 – конденсаторы разделения, где всё напряжение и питание разделяется пополам.
  • TV2 – трансформатор для создания импульсов.
  • VD14, VD15 – диоды, работающие от импульсов.
  • C9, C10 – фильтрующие конденсаторы.

Благодаря правильной расстановке и тщательному подбору характеристик всех перечисленных составляющих, мы и получаем блок питания необходимой нам мощности для дальнейшего использования.

Отличия конструкции лампы от импульсного блока

Очень похожа по строению импульсного блока питания, из-за чего сделать импульсный бп можно очень легко и быстро. Для переделки, необходимо установить перемычку и дополнительно установить трансформатор вырабатывающий импульсы и который оснащён выпрямителем.

Для облегчения ибп, удалена стеклянная люминесцентная лампа и некоторые составляющие конструкции, которые были заменены специальным соединителем. Вы могли заметить, что для изменения необходимо выполнить всего несколько простых операций, и этого будет вполне достаточно.


Плата с энергосберегающей лампы

Выдаваемый показатель мощности, ограничен размером используемого трансформатора, максимальным возможным пропускным показателем основных транзисторов и габаритами охлаждающей системы. Чтобы увеличить немного мощность, достаточно намотать ещё обмотки на дроссель.

Импульсный трансформатор

Основной ключевой характеристикой импульсного блока питания есть возможность адаптироваться к показателям трансформатора, который используется в конструкции. А то, что обратный ток не нуждается в проходке через трансформатор, который мы сами сделали, значительно облегчает нам расчёты номинальной мощности трансформатора.

Таким образом, большинство ошибок при расчёте становятся незначительными благодаря использованию такой схемы.

Рассчитываем ёмкость необходимого напряжения

Для экономии используют конденсаторы с маленьким показателем ёмкости. Именно от них будет зависеть показатель пульсации входящего напряжения. Для снижения пульсации, необходимо увеличивать объём конденсаторов тоже делается для увеличения показателя пульсации только в обратном порядке.

Для снижения размеров и улучшения компактности, возможно, применять конденсаторы на электролитах. К примеру, можно использовать такие конденсаторы, которые вмонтированы в фототехнику. Они обладают ёмкостью 100µF х 350V.

Чтобы обеспечить бп показателем двадцать ватт, достаточно использовать стандартную схему от энергосберегающих светильников и вовсе не наматывая дополнительной намотки на трансформаторы. В случае, когда дроссель обладает свободным пространством и может дополнительно уместить витки, можно их добавить.

Таким образом, следует добавить два-три десятка витков обмотки, чтобы была возможность подзаряжать мелкие устройства или использовать ибп как усилитель для техники.


Схема блока питания на 20 ватт

Если вам требуется более эффективное увеличение показателя мощности, можно использовать самый простой провод из меди, покрытый лаком. Он специально предназначен для обмотки. Убедитесь что изоляция на стандартной обмотке дросселя достаточно качественная, так как эта часть будет находиться под значением входящего тока. Также следует оградить её от вторичных витков с помощью бумажной изоляцией.


Действующая модель БП мощность – 20 Ватт.

Для изоляции используем специальный картон толщиной 0.05 миллиметра или 0.1 миллиметра. В первом случае необходимо два слова, во втором достаточно одного. Сечение обмоточного провода используем из максимального больших, количество витков будет подбирать методом проб. Обычно витков необходимо достаточно мало.

Проделав все необходимые действия, вы получаете мощность бп 20 ватт и рабочую температура трансформатора шестьдесят градусов, транзистора сорок два. Большую мощность сделать не получиться, так как размеры дросселя ограничены и сделать большее количество обмотки не получится.

Уменьшение поперечного диаметра используемого провода конечно увеличит численность витков, но на мощность это повлияет только в минус.

Чтобы иметь возможность поднять мощность бп до сотни ватт, необходимо дополнительно докрутить импульсный трансформатор и расширить ёмкость фильтровочного конденсатора до 100 фарад.


Схема 100 ватт БП

Чтобы облегчить нагрузку и уменьшить температуру транзисторов, к ним следует добавить радиаторы для охлаждения. При такой конструкции, КПД получится в районе девяноста процентов.

Следует подключить транзистор 13003

К электронному балласту бп следует подключить транзистор 13003, который способен закрепляться с помощью фасонной пружины. Они выгодны тем, что с ними нет необходимости устанавливать прокладку из-за отсутствия металлических площадок. Конечно, их теплоотдача значительно хуже.

Лучше всего проводить закрепления с помощью винтов М2.5, с заранее установленной изоляцией. Также возможно использовать термопасту, которая не передаёт напряжение сети.

Убедитесь что транзисторы надёжно заизолированы, так как через них проходит ток и при плохой изоляции возможно короткое замыкание.

Подключение к сети 220 вольт

Подключение происходит с помощью лампы накаливания. Она будет служить защитным механизмом и подключается перед блоком питания.

В этом случае, лампа служит балластом, который имеет нелинейный показатель и отлично предохраняет ибп от неисправной работы сети. Значение мощности лампы необходимо подбирать таким же образом, как и мощность самого импульсного блока питания.

Сгорела энергосберегающая лампа? Конечно проще её выбросить в мусорку, ну а если таких неисправных энергосберегающих ламп уже целая полка, то можно попытаться отремонтировать ее своими руками и сделать из них хотя бы одну, но уже исправную.

Данная лампа перегорает двумя способами:

горит электронная схема , а именно вылетает схема электронного балласта (диодный мостик, транзисторы и низкоомные резисторы в цепи эммитера, иногда шунтирующие диоды)
перегорает спираль накала (лампа как правило просто не включается или зажигается, мигая, очень долго)

Для начала выясним что произошло и попытаемся ее разобрать поддев плоской отверткой в местах указанными стрелками на фотографии. Внутри патрона энергосберегалки имеются специальные защелки, которые надо будет аккуратно отщелкнуть, причем так чтобы не сломать корпус



Вставляете отвертку между двух половинок, и крутите ее вправо или влево. Когда щель увеличится, в нее можно просунуть еще одну отвертку, а первой немного отступить, вставить в щель и опять провернуть. Здесь самоеосновное – отщелкнуть первую. Должно получится вот так:



Перед нами окажется плата электронного блока, которая связана с цоколем и колбой лампы. Сама плата электронного блока – это стандартное пускорегулирующее устройство. Затем переходим к операции по отпаиванию колбы.




Откусываем провода питания:


Прозваниваем накальные нити в колбе энергосберегающей лампы:

Если хоть одна спираль перегорела, то колбу выкидываем, иначе подбираем к хорошей колбе исправную электронику. Раз, два, три.... Лампочка гори, и все мы собрали своими руками рабочую лампочку из нескольких:)

Для желающих поискать неисправности в электронном баласте привожу схему последнего.

По сути, это импульсный блок питания. Схема запуска состоит из элементов VD1, С2, R6 и динистора VS1. Диоды VD2, VD3 и резисторы R1, R3 выполняют защитные функции. При включении ЛДС через R6 заряжается С2, в определенный момент открывается динистор VS1 и формируется импульс, открывающий транзистор VT2. После этого конденсатор С2 разряжен, а диод VD1 шунтирует эту цепь. Запускается генератор на транзисторах VT1, VT2 и трансформаторе Тг1.

На нити лампы поступает напряжение через “силовой” конденсатор С6, резонансный СЗ и индуктивность L1. Разряд в лампе происходит на резонансной частоте, определяемой емкостью СЗ. Во время разряда СЗ шунтируется, и частота контура снижается, так как в работу вступает конденсатор С6 большей емкости. В это время транзистор VT1 открыт, сердечник Тг1 входит в насыщение, и за счет обратной связи по базе транзистор закрывается. Далее процесс повторяется.

В стартере возникает газовый разряд, его контакты нагреваются и замыкаются, ток течет через нити накала лампы, и они раскаляются до температуры около 800°С. Контакты стартера остывают, размыкаются, в дросселе возникает ЭДС самоиндукции, т.е. дроссель выдает импульс высокого напряжения на электроды ЛДС, что вызывает зажигание газового разряда в лампе

Можно к рабочей колбе можно подсунуть стандартную дроссельную схему запуска. Нити накала в такой лампе включены последовательно через стартер. Дроссель выполнен на Ш-образном магнитопроводе (при плохой пропитке или сборке весьма гудящий компонент). Напряжение сети при замыкании тумблера, проходя через дроссель, поступает на нить накала первой колбы лампы, далее - на стартер и вторую нить накала. Стартер служит прерывателем.


Напряжение зажигания тлеющего разряда стартера меньше напряжения сети, но больше рабочего напряжения лампы. В стартере возникает газовый разряд, его контакты нагреваются и замыкаются, ток течет через нити накала лампы, и они раскаляются до температуры около 800°С.

Контакты стартера остывают, размыкаются, в дросселе возникает ЭДС самоиндукции, т.е. дроссель выдает импульс высокого напряжения на электроды ЛДС, что вызывает зажигание газового разряда в лампе.

Путем нехитрой переделки элетронного блока энергосберегающей лампы можно сделать импульсный блок питания, для этого потребуется лишь подключить дополнительный трансформатор с выпрямителем.



Трансформатор L1 можно также сделать своими руками из дросселя, включенного последовательно лампе имеющегося в схеме, предварительно разобрав его и удалив прокладки, создающие зазор в магнитопроводе,а затем добавить вторичную обмоткуили сделать новый трансформатор на ферритовом кольце от старого компьютерного блока питания диаметром 15-20 мм, - первичная обмотка 350 витков ПЭВ 0,23, вторичная - в зависимости от того выходного напряжения которое нам потребуется.

Со временем в бардачке любого радиолюбителя скапливается огромное количество электронной начинки от энергосберегающих лампочек, а многие радиокомпоненты из них можно активно использовать в других радиолюбительских направлениях. Так высоковольтный генератор из балласта обычной энергосберегающей лампы собирается за 5 минут, и вуаля питание генератора Тесла уже есть.

Подборка нестандартных схем запитки таких ламп не переменным, а постоянным током, а также рассмотрен балласт для люминесцентных ламп на микросхеме IR2151.

Ох уж этот вопрос энергосбережения привел к тому, что купить обычную лампочку накала практически невозможно, а лампы дневного света раздражают наши глаза. Ответ прост переходим на светодиодные лампы которые не только более комфортные чем люминесцентные, но еще и более энергоэффективные и долговечные. Но посмотрев на их цену в магазине, желание их приобретать быстро отпадает. Но мы не будем отчаиваться мы же радиолюбители, так изготовим самодельные светодиодные лампочки от сети напряжением 220 В.

Что нужно знать для ремонта светодиодных ламп?

Если светодиодная лампа при включение пищит, но не светит, то необходимо ее разобрать и прозвонить обычным мультиметром каждый светодиод. (Один или несколько точно сгорели, особенно это типично для дешевых китайских ламп)
Если писка нет, то идем искать неисправность в плату драйверов, несколько их схем с описаниями рассмотрены ниже.


При конструирование светодиодной лампы, любой разработчик сталкивается с задачей отвода тепла, выделяющегося в небольшом объёме светильника, т.к перегрев светодиодам противопоказан. Кроме того источником выделения тепла, помимо самих светодиодов, является блок питания или другими словами - светодиодный драйвер. Рассмотрены конструкции на микросхемах: Supertex HV9910 , LT3799 и NCL30000 . В архиве приведены их подробные справочные характеристики.

В этой статье Вы найдёте подробное описание процесса изготовления импульсных блоков питания разной мощности на базе электронного балласта компактной люминесцентной лампы.
Импульсный блок питания на 5… 20 Ватт вы сможете изготовить менее чем за час. На изготовление 100-ваттного блока питания понадобится несколько часов. Можно изготовить и более мощные электронные трансформаторы, например на IR2153, а можно КУПИТЬ ГОТОВЫЙ и переделать под свои напряжения.

В настоящее время получили широкое распространение Компактные Люминесцентные Лампы (КЛЛ). Для уменьшения размеров балластного дросселя в них используется схема высокочастотного преобразователя напряжения, которая позволяет значительно снизить размер дросселя.

В случае выхода из строя электронного балласта, его можно легко отремонтировать. Но, когда выходит из строя сама колба, то лампочку обычно выбрасывают.

Однако электронный балласт такой лампочки, это почти готовый импульсный Блок Питания (БП), причем довольно компактный. Единственное, чем схема электронного балласта отличается от настоящего импульсного блока питания, это отсутствием разделительного трансформатора и выпрямителя, если он необходим.

В то же время, современные радиолюбители испытывают большие трудности при поиске силовых трансформаторов для питания своих самоделок. Если даже трансформатор найден, то его перемотка требует использования большого количества медного провода, да и массо-габаритные параметры изделий, собранных на основе силовых трансформаторов не радуют. А ведь в подавляющем большинстве случаев силовой трансформатор можно заменить импульсным блоком питания. Если же для этих целей использовать балласт от неисправных энергосберегающих ламп, то экономия составит значительную сумму, особенно, если речь идёт о трансформаторах на 100 Ватт и больше.

Отличие схемы балласта энергосберегающей лампы от импульсного блока питания

Это одна из самых распространённых электрических схем энергосберегающих ламп. Для преобразования схемы КЛЛ в импульсный блок питания достаточно установить всего одну перемычку между точками А – А’ и добавить импульсный трансформатор с выпрямителем. Красным цветом отмечены элементы, которые можно удалить.



Схема энергосберегающей лампы

А это уже законченная схема импульсного блока питания, собранная на основе балласта люминисцентной лампы с использованием дополнительного импульсного трансформатора.

Для упрощения, удалена люминесцентная лампа и несколько деталей, которые были заменены перемычкой.

Как видите, схема КЛЛ не требует больших изменений. Красным цветом отмечены дополнительные элементы, привнесённые в схему.



Законченная схема импульсного блока питания

Какой мощности блок питания можно изготовить из КЛЛ?

Мощность импульсного блока питания ограничивается габаритной мощностью импульсного трансформатора, максимально допустимым током ключевых транзисторов и величиной радиатора охлаждения, если он используется.

Блок питания небольшой мощности можно построить, намотав вторичную обмотку прямо на каркас уже имеющегося дросселя.



БП с вторичной обмоткой прямо на каркас уже имеющегося дросселя

В случае если окно дросселя не позволяет намотать вторичную обмотку или если требуется построить блок питания мощностью, значительно превышающей мощность КЛЛ, то понадобится дополнительный импульсный трансформатор.



БП с дополнительным импульсным трансформатором

Если требуется получить блок питания мощностью свыше 100 Ватт, а используется балласт от лампы на 20-30 Ватт, то, скорее всего, придётся внести небольшие изменения и в схему электронного балласта.

В частности, может понадобиться установить более мощные диоды VD1-VD4 во входной мостовой выпрямитель и перемотать входной дроссель L0 более толстым проводом. Если коэффициент усиления транзисторов по току окажется недостаточным, то придётся увеличить базовый ток транзисторов, уменьшив номиналы резисторов R5, R6. Кроме этого придётся увеличить мощность резисторов в базовых и эмиттерных цепях.

Если частота генерации окажется не очень высокой, то возможно придётся увеличить емкость разделительных конденсаторов C4, C6.

Импульсный трансформатор для блока питания

Особенностью полумостовых импульсных блоков питания с самовозбуждением является способность адаптироваться к параметрам используемого трансформатора. А тот факт, что цепь обратной связи не будет проходить через наш самодельный трансформатор и вовсе упрощает задачу расчёта трансформатора и наладки блока. Блоки питания, собранные по этим схемам прощают ошибки в расчётах до 150% и выше. Проверено на практике.

Не пугайтесь! Намотать импульсный трансформатор можно в течение просмотра одного фильма или даже быстрее, если Вы собираетесь выполнять эту монотонную работу сосредоточенно.

Ёмкость входного фильтра и пульсации напряжения

Во входных фильтрах электронных балластов, из-за экономии места, используются конденсаторы небольшой ёмкости, от которых зависит величина пульсаций напряжения с частотой 100 Hz.

Чтобы снизить уровень пульсаций напряжения на выходе блока питания, нужно увеличить ёмкость конденсатора входного фильтра. Желательно, чтобы на каждый Ватт мощности БП приходилось по одной микрофараде или около того. Увеличение ёмкости С0 повлечёт за собой рост пикового тока, протекающего через диоды выпрямителя в момент включения БП. Чтобы ограничить этот ток, необходим резистор R0. Но, мощность исходного резистора КЛЛ мала для таких токов и его следует заменить на более мощный.

Если требуется построить компактный блок питания, то можно использовать электролитические конденсаторы, применяющиеся в лампах вспышках плёночных «мальниц». Например, в одноразовых фотоаппаратах Kodak установлены миниатюрные конденсаторы без опознавательных знаков, но их ёмкость аж целых 100µF при напряжении 350 Вольт.

Блок питания мощностью 20 Ватт



Блок питания мощностью 20 Ватт

Блок питания мощностью, близкой к мощности исходной КЛЛ, можно собрать, даже не мотая отдельный трансформатор. Если у оригинального дросселя есть достаточно свободного места в окне магнитопровода, то можно намотать пару десятков витков провода и получить, например, блок питания для зарядного устройства или небольшого усилителя мощности.

На картинке видно, что поверх имеющейся обмотки был намотан один слой изолированного провода. Я использовал провод МГТФ (многожильный провод во фторопластовой изоляции). Однако таким способом можно получить мощность всего в несколько Ватт, так как большую часть окна будет занимать изоляция провода, а сечение самой меди будет невелико.

Если требуется бо’льшая мощность, то можно использовать обыкновенный медный лакированный обмоточный провод.

Внимание! Оригинальная обмотка дросселя находится под напряжением сети! При описанной выше доработке, обязательно побеспокойтесь о надёжной межобмоточной изоляции, особенно, если вторичная обмотка мотается обычным лакированным обмоточным проводом. Даже если первичная обмотка покрыта синтетической защитной плёнкой, дополнительная бумажная прокладка необходима!

Как видите, обмотка дросселя покрыта синтетической плёнкой, хотя часто обмотка этих дросселей вообще ничем не защищена.

Наматываем поверх плёнки два слоя электрокартона толщиной 0,05мм или один слой толщиной 0,1мм. Если нет электрокартона, используем любую подходящую по толщине бумагу.

Поверх изолирующей прокладки мотаем вторичную обмотку будущего трансформатора. Сечение провода следует выбирать максимально возможное. Количество витков подбирается экспериментальным путём, благо их будет немного.

Мне, таким образом, удалось получить мощность на нагрузке 20 Ватт при температуре трансформатора 60°C, а транзисторов – 42°C. Получить ещё большую мощность, при разумной температуре трансформатора, не позволила слишком малая площадь окна магнитопровода и обусловленное этим сечение провода.



На картинке действующая модель БП

Мощность, подводимая к нагрузке – 20 Ватт.
Частота автоколебаний без нагрузки – 26 кГц.
Частота автоколебаний при максимальной нагрузке – 32 кГц
Температура трансформатора – 60?С
Температура транзисторов – 42?С

Для увеличения мощности блока питания пришлось намотать импульсный трансформатор TV2. Кроме этого, я увеличил ёмкость конденсатора фильтра сетевого напряжения C0 до 100µF.



Блок питания мощностью 100 Ватт

Так как КПД блока питания вовсе не равен 100%, пришлось прикрутить к транзисторам какие-то радиаторы.

Ведь если КПД блока будет даже 90%, рассеять 10 Ватт мощности всё равно придётся.

Мне не повезло, в моём электроном балласте были установлены транзисторы 13003 поз.1 такой конструкции, которая, видимо, рассчитана на крепление к радиатору при помощи фасонных пружин. Эти транзисторы не нуждаются в прокладках, так как не снабжены металлической площадкой, но и тепло отдают намного хуже. Я их заменил транзисторами 13007 поз.2 с отверстиями, чтобы их можно было прикрутить к радиаторам обычными винтами. Кроме того, 13007 имеют в несколько раз большие предельно-допустимые токи. Купить отдельно MJE13007 можно .

Если пожелаете, можете смело прикручивать оба транзистора на один радиатор. Я проверил, это работает.

Только, корпуса обоих транзисторов должны быть изолированы от корпуса радиатора, даже если радиатор находится внутри корпуса электронного устройства.

Крепление удобно осуществлять винтами М2,5, на которые нужно предварительно надеть изоляционные шайбы и отрезки изоляционной трубки (кембрика). Допускается использование теплопроводной пасты КПТ-8, так как она не проводит ток.

Внимание! Транзисторы находятся под напряжением сети, поэтому изоляционные прокладки должны обеспечивать условия электробезопасности!



Действующий стоваттный импульсный блок питания

Резисторы эквивалента нагрузки помещены в воду, так как их мощность недостаточна.
Мощность, выделяемая на нагрузке – 100 Ватт.
Частота автоколебаний при максимальной нагрузке – 90 кГц.
Частота автоколебаний без нагрузки – 28,5 кГц.
Температура транзисторов – 75?C.
Площадь радиаторов каждого транзистора – 27см?.
Температура дросселя TV1 – 45?C.
TV2 – 2000НМ (O28 х O16 х 9мм)

Выпрямитель

Все вторичные выпрямители полумостового импульсного блока питания должны быть обязательно двухполупериодным. Если не соблюсти это условие, то магинтопровод может войти в насыщение.

Существуют две широко распространённые схемы двухполупериодных выпрямителей.

1. Мостовая схема.
2. Схема с нулевой точкой.

Мостовая схема позволяет сэкономить метр провода, но рассеивает в два раза больше энергии на диодах.

Схема с нулевой точкой более экономична, но требует наличия двух совершенно симметричных вторичных обмоток. Асимметрия по количеству витков или расположению может привести к насыщению магнитопровода.

Однако именно схемы с нулевой точкой используются, когда требуется получить большие токи при малом выходном напряжении. Тогда, для дополнительной минимизации потерь, вместо обычных кремниевых диодов, используют диоды Шоттки, на которых падение напряжения в два-три раза меньше.

Пример.
Выпрямители компьютерных блоков питания выполнены по схеме с нулевой точкой. При отдаваемой в нагрузку мощности 100 Ватт и напряжении 5 Вольт даже на диодах Шоттки может рассеяться 8 Ват.

100 / 5 * 0,4 = 8(Ватт)

Если же применить мостовой выпрямитель, да ещё и обычные диоды, то рассеиваемая на диодах мощность может достигнуть 32 Ватт или даже больше.

100 / 5 * 0,8 * 2 = 32(Ватт).

Обратите внимание на это, когда будете проектировать блок питания, чтобы потом не искать, куда исчезла половина мощности.

В низковольтных выпрямителях лучше использовать именно схему с нулевой точкой. Тем более что при ручной намотке можно просто намотать обмотку в два провода. Кроме этого, мощные импульсные диоды недёшевы.

Как правильно подключить импульсный блок питания к сети?

Для наладки импульсных блоков питания обычно используют вот такую схему включения. Здесь лампа накаливания используется в качестве балласта с нелинейной характеристикой и защищает ИБП от выхода из строя при нештатных ситуациях. Мощность лампы обычно выбирают близкой к мощности испытываемого импульсного БП.

При работе импульсного БП на холостом ходу или при небольшой нагрузке, сопротивление нити какала лампы невелико и оно не влияет на работу блока. Когда же, по каким-либо причинам, ток ключевых транзисторов возрастает, спираль лампы накаливается и её сопротивление увеличивается, что приводит к ограничению тока до безопасной величины.

На этом чертеже изображена схема стенда для тестирования и наладки импульсных БП, отвечающая нормам электробезопасности. Отличие этой схемы от предыдущей в том, что она снабжена разделительным трансформатором, который обеспечивает гальваническую развязку исследуемого ИБП от осветительной сети. Выключатель SA2 позволяет блокировать лампу, когда блок питания отдаёт большую мощность.

Важной операцией при тестировании БП является испытание на эквиваленте нагрузки. В качестве нагрузки удобно использовать мощные резисторы типа ПЭВ, ППБ, ПСБ и т.д. Эти «стекло-керамические» резисторы легко найти на радиорынке по зелёной раскраске. Красные цифры – рассеиваемая мощность.


Из опыта известно, что мощности эквивалента нагрузки почему-то всегда не хватает. Перечисленные же выше резисторы могут ограниченное время рассеивать мощность в два-три раза превышающую номинальную. Когда БП включается на длительное время для проверки теплового режима, а мощность эквивалента нагрузки недостаточна, то резисторы можно просто опустить в воду.

Будьте осторожны, берегитесь ожога!
Нагрузочные резисторы этого типа могут нагреться до температуры в несколько сотен градусов без каких-либо внешних проявлений!
То есть, ни дыма, ни изменения окраски Вы не заметите и можете попытаться тронуть резистор пальцами.

Как наладить импульсный блок питания?

Собственно, блок питания, собранный на основе исправного электронного балласта, особой наладки не требует.

Его нужно подключить к эквиваленту нагрузки и убедиться, что БП способен отдать расчетную мощность.

Во время прогона под максимальной нагрузкой, нужно проследить за динамикой роста температуры транзисторов и трансформатора. Если слишком сильно греется трансформатор, то нужно, либо увеличить сечение провода, либо увеличить габаритную мощность магнитопровода, либо и то и другое.

Если сильно греются транзисторы, то нужно установить их на радиаторы.

Если в качестве импульсного трансформатора используется домотанный дроссель от КЛЛ, а его температура превышает 60… 65?С, то нужно уменьшить мощность нагрузки.

ИМПУЛЬСНЫЙ БЛОК ПИТАНИЯ ИЗ ЭНЕРГОСБЕРЕГАЮЩИХ ЛАМП маломощный импульсный блок питания из подручных материалов своими руками

Каково назначение элементов схемы импульсного блока питания?



Схема импульсного блока питания

R0 – ограничивает пиковый ток, протекающий через диоды выпрямителя, в момент включения. В КЛЛ также часто выполняет функцию предохранителя.

VD1… VD4 – мостовой выпрямитель.

L0, C0 – фильтр питания.

R1, C1, VD2, VD8 – цепь запуска преобразователя.

Работает узел запуска следующим образом. Конденсатор C1 заряжается от источника через резистор R1. Когда напряжения на конденсаторе C1 достигает напряжения пробоя динистора VD2, динистор отпирается сам и отпирает транзистор VT2, вызывая автоколебания. После возникновения генерации, прямоугольные импульсы прикладываются к катоду диода VD8 и отрицательный потенциал надёжно запирает динистор VD2.

R2, C11, C8 – облегчают запуск преобразователя.

R7, R8 – улучшают запирание транзисторов.

R5, R6 – ограничивают ток баз транзисторов.

R3, R4 – предотвращают насыщение транзисторов и исполняют роль предохранителей при пробое транзисторов.

VD7, VD6 – защищают транзисторы от обратного напряжения.

TV1 – трансформатор обратной связи.

L5 – балластный дроссель.

C4, C6 – разделительные конденсаторы, на которых напряжение питания делится пополам.

TV2 – импульсный трансформатор.

VD14, VD15 – импульсные диоды.

C9, C10 – конденсаторы фильтра.

По материалам сайта http://www.ruqrz.com/

Для большей наглядности приведено несколько принципиальных схем ламп популярных производителей:







В этой статье Вы найдёте подробное описание процесса изготовления импульсных блоков питания разной мощности на базе электронного балласта компактной люминесцентной лампы.
Импульсный блок питания на 5… 20 Ватт вы сможете изготовить менее чем за час. На изготовление 100-ваттного блока питания понадобится несколько часов.

В настоящее время получили широкое распространение Компактные Люминесцентные Лампы (КЛЛ). Для уменьшения размеров балластного дросселя в них используется схема высокочастотного преобразователя напряжения, которая позволяет значительно снизить размер дросселя.

В случае выхода из строя электронного балласта, его можно легко отремонтировать. Но, когда выходит из строя сама колба, то лампочку обычно выбрасывают.


Однако электронный балласт такой лампочки, это почти готовый импульсный Блок Питания (БП). Единственное, чем схема электронного балласта отличается от настоящего импульсного БП, это отсутствием разделительного трансформатора и выпрямителя, если он необходим.

В то же время, современные радиолюбители испытывают большие трудности при поиске силовых трансформаторов для питания своих самоделок. Если даже трансформатор найден, то его перемотка требует использования большого количества медного провода, да и массо-габаритные параметры изделий, собранных на основе силовых трансформаторов не радуют. А ведь в подавляющем большинстве случаев силовой трансформатор можно заменить импульсным блоком питания. Если же для этих целей использовать балласт от неисправных КЛЛ, то экономия составит значительную сумму, особенно, если речь идёт о трансформаторах на 100 Ватт и больше.

Отличие схемы КЛЛ от импульсного БП

Это одна из самых распространённых электрических схем энергосберегающих ламп. Для предобразования схемы КЛЛ в импульсный блок питания достаточно установить всего одну перемычку между точками А – А’ и добавить импульсный трансформатор с выпрямителем. Красным цветом отмечены элементы, которые можно удалить.


А это уже законченная схема импульсного блока питания, собранная на основе КЛЛ с использованием дополнительного импульсного трансформатора.

Для упрощения, удалена люминесцентная лампа и несколько деталей, которые были заменены перемычкой.

Как видите, схема КЛЛ не требует больших изменений. Красным цветом отмечены дополнительные элементы, привнесённые в схему.


Какой мощности блок питания можно изготовить из КЛЛ?

Мощность блока питания ограничивается габаритной мощностью импульсного трансформатора, максимально допустимым током ключевых транзисторов и величиной радиатора охлаждения, если он используется.

Блок питания небольшой мощности можно построить, намотав вторичную обмотку прямо на каркас уже имеющегося дросселя.


В случае если окно дросселя не позволяет намотать вторичную обмотку или если требуется построить блок питания мощностью, значительно превышающей мощность КЛЛ, то понадобится дополнительный импульсный трансформатор.


Если требуется получить блок питания мощностью свыше 100 Ватт, а используется балласт от лампы на 20-30 Ватт, то, скорее всего, придётся внести небольшие изменения и в схему электронного балласта.

В частности, может понадобиться установить более мощные диоды VD1-VD4 во входной мостовой выпрямитель и перемотать входной дроссель L0 более толстым проводом. Если коэффициент усиления транзисторов по току окажется недостаточным, то придётся увеличить базовый ток транзисторов, уменьшив номиналы резисторов R5, R6. Кроме этого придётся увеличить мощность резисторов в базовых и эмиттерных цепях.

Если частота генерации окажется не очень высокой, то возможно придётся увеличить емкость разделительных конденсаторов C4, C6.

Импульсный трансформатор для блока питания

Особенностью полумостовых импульсных блоков питания с самовозбуждением является способность адаптироваться к параметрам используемого трансформатора. А тот факт, что цепь обратной связи не будет проходить через наш самодельный трансформатор и вовсе упрощает задачу расчёта трансформатора и наладки блока. Блоки питания, собранные по этим схемам прощают ошибки в расчётах до 150% и выше. Проверено на практике.

Не пугайтесь! Намотать импульсный трансформатор можно в течение просмотра одного фильма или даже быстрее, если Вы собираетесь выполнять эту монотонную работу сосредоточенно.

Ёмкость входного фильтра и пульсации напряжения

Во входных фильтрах электронных балластов, из-за экономии места, используются конденсаторы небольшой ёмкости, от которых зависит величина пульсаций напряжения с частотой 100 Hz.

Чтобы снизить уровень пульсаций напряжения на выходе БП, нужно увеличить ёмкость конденсатора входного фильтра. Желательно, чтобы на каждый Ватт мощности БП приходилось по одной микрофараде или около того. Увеличение ёмкости С0 повлечёт за собой рост пикового тока, протекающего через диоды выпрямителя в момент включения БП. Чтобы ограничить этот ток, необходим резистор R0. Но, мощность исходного резистора КЛЛ мала для таких токов и его следует заменить на более мощный.

Если требуется построить компактный блок питания, то можно использовать электролитические конденсаторы, применяющиеся в лампах вспышках плёночных «мальниц». Например, в одноразовых фотоаппаратах Kodak установлены миниатюрные конденсаторы без опознавательных знаков, но их ёмкость аж целых 100µF при напряжении 350 Вольт.


Блок питания мощностью, близкой к мощности исходной КЛЛ, можно собрать, даже не мотая отдельный трансформатор. Если у оригинального дросселя есть достаточно свободного места в окне магнитопровода, то можно намотать пару десятков витков провода и получить, например, блок питания для зарядного устройства или небольшого усилителя мощности.

На картинке видно, что поверх имеющейся обмотки был намотан один слой изолированного провода. Я использовал провод МГТФ (многожильный провод во фторопластовой изоляции). Однако таким способом можно получить мощность всего в несколько Ватт, так как большую часть окна будет занимать изоляция провода, а сечение самой меди будет невелико.

Если требуется бо’льшая мощность, то можно использовать обыкновенный медный лакированный обмоточный провод.

Внимание! Оригинальная обмотка дросселя находится под напряжением сети! При описанной выше доработке, обязательно побеспокойтесь о надёжной межобмоточной изоляции, особенно, если вторичная обмотка мотается обычным лакированным обмоточным проводом. Даже если первичная обмотка покрыта синтетической защитной плёнкой, дополнительная бумажная прокладка необходима!

Как видите, обмотка дросселя покрыта синтетической плёнкой, хотя часто обмотка этих дросселей вообще ничем не защищена.

Наматываем поверх плёнки два слоя электрокартона толщиной 0,05мм или один слой толщиной 0,1мм. Если нет электрокартона, используем любую подходящую по толщине бумагу.

Поверх изолирующей прокладки мотаем вторичную обмотку будущего трансформатора. Сечение провода следует выбирать максимально возможное. Количество витков подбирается экспериментальным путём, благо их будет немного.

Мне, таким образом, удалось получить мощность на нагрузке 20 Ватт при температуре трансформатора 60ºC, а транзисторов – 42ºC. Получить ещё большую мощность, при разумной температуре трансформатора, не позволила слишком малая площадь окна магнитопровода и обусловленное этим сечение провода.


Мощность, подводимая к нагрузке – 20 Ватт.
Частота автоколебаний без нагрузки – 26 кГц.
Частота автоколебаний при максимальной нагрузке – 32 кГц
Температура трансформатора – 60ºС
Температура транзисторов – 42ºС

Для увеличения мощности блока питания пришлось намотать импульсный трансформатор TV2. Кроме этого, я увеличил ёмкость конденсатора фильтра сетевого напряжения C0 до 100µF.


Так как КПД блока питания вовсе не равен 100%, пришлось прикрутить к транзисторам какие-то радиаторы.

Ведь если КПД блока будет даже 90%, рассеять 10 Ватт мощности всё равно придётся.

Мне не повезло, в моём электроном балласте были установлены транзисторы 13003 поз.1 такой конструкции, которая, видимо, рассчитана на крепление к радиатору при помощи фасонных пружин. Эти транзисторы не нуждаются в прокладках, так как не снабжены металлической площадкой, но и тепло отдают намного хуже. Я их заменил транзисторами 13007 поз.2 с отверстиями, чтобы их можно было прикрутить к радиаторам обычными винтами. Кроме того, 13007 имеют в несколько раз бо’льшие предельно-допустимые токи.

Если пожелаете, можете смело прикручивать оба транзистора на один радиатор. Я проверил, это работает.

Только, корпуса обоих транзисторов должны быть изолированы от корпуса радиатора, даже если радиатор находится внутри корпуса электронного устройства.

Крепление удобно осуществлять винтами М2,5, на которые нужно предварительно надеть изоляционные шайбы и отрезки изоляционной трубки (кембрика). Допускается использование теплопроводной пасты КПТ-8, так как она не проводит ток.

Внимание! Транзисторы находятся под напряжением сети, поэтому изоляционные прокладки должны обеспечивать условия электробезопасности!


Резисторы эквивалента нагрузки помещены в воду, так как их мощность недостаточна.
Мощность, выделяемая на нагрузке – 100 Ватт.
Частота автоколебаний при максимальной нагрузке – 90 кГц.
Частота автоколебаний без нагрузки – 28,5 кГц.
Температура транзисторов – 75ºC.
Площадь радиаторов каждого транзистора – 27см².
Температура дросселя TV1 – 45ºC.
TV2 – 2000НМ (Ø28 х Ø16 х 9мм)

Выпрямитель

Все вторичные выпрямители полумостового импульсного блока питания должны быть обязательно двухполупериодным. Если не соблюсти это условие, то магинтопровод может войти в насыщение.

Существуют две широко распространённые схемы двухполупериодных выпрямителей.

1. Мостовая схема.
2. Схема с нулевой точкой.

Мостовая схема позволяет сэкономить метр провода, но рассеивает в два раза больше энергии на диодах.

Схема с нулевой точкой более экономична, но требует наличия двух совершенно симметричных вторичных обмоток. Асимметрия по количеству витков или расположению может привести к насыщению магнитопровода.

Однако именно схемы с нулевой точкой используются, когда требуется получить большие токи при малом выходном напряжении. Тогда, для дополнительной минимизации потерь, вместо обычных кремниевых диодов, используют диоды Шоттки, на которых падение напряжения в два-три раза меньше.

Пример.
Выпрямители компьютерных блоков питания выполнены по схеме с нулевой точкой. При отдаваемой в нагрузку мощности 100 Ватт и напряжении 5 Вольт даже на диодах Шоттки может рассеяться 8 Ват.

100 / 5 * 0,4 = 8(Ватт)

Если же применить мостовой выпрямитель, да ещё и обычные диоды, то рассеиваемая на диодах мощность может достигнуть 32 Ватт или даже больше.

100 / 5 * 0,8 * 2 = 32(Ватт).

Обратите внимание на это, когда будете проектировать блок питания, чтобы потом не искать, куда исчезла половина мощности.

В низковольтных выпрямителях лучше использовать именно схему с нулевой точкой. Тем более что при ручной намотке можно просто намотать обмотку в два провода. Кроме этого, мощные импульсные диоды недёшевы.

Как правильно подключить импульсный блок питания к сети?

Для наладки импульсных блоков питания обычно используют вот такую схему включения. Здесь лампа накаливания используется в качестве балласта с нелинейной характеристикой и защищает ИБП от выхода из строя при нештатных ситуациях. Мощность лампы обычно выбирают близкой к мощности испытываемого импульсного БП.

При работе импульсного БП на холостом ходу или при небольшой нагрузке, сопротивление нити какала лампы невелико и оно не влияет на работу блока. Когда же, по каким-либо причинам, ток ключевых транзисторов возрастает, спираль лампы накаливается и её сопротивление увеличивается, что приводит к ограничению тока до безопасной величины.

На этом чертеже изображена схема стенда для тестирования и наладки импульсных БП, отвечающая нормам электробезопасности. Отличие этой схемы от предыдущей в том, что она снабжена разделительным трансформатором, который обеспечивает гальваническую развязку исследуемого ИБП от осветительной сети. Выключатель SA2 позволяет блокировать лампу, когда блок питания отдаёт большую мощность.

Важной операцией при тестировании БП является испытание на эквиваленте нагрузки. В качестве нагрузки удобно использовать мощные резисторы типа ПЭВ, ППБ, ПСБ и т.д. Эти «стекло-керамические» резисторы легко найти на радиорынке по зелёной раскраске. Красные цифры – рассеиваемая мощность.


Из опыта известно, что мощности эквивалента нагрузки почему-то всегда не хватает. Перечисленные же выше резисторы могут ограниченное время рассеивать мощность в два-три раза превышающую номинальную. Когда БП включается на длительное время для проверки теплового режима, а мощность эквивалента нагрузки недостаточна, то резисторы можно просто опустить в воду.

Будьте осторожны, берегитесь ожога!
Нагрузочные резисторы этого типа могут нагреться до температуры в несколько сотен градусов без каких-либо внешних проявлений!
То есть, ни дыма, ни изменения окраски Вы не заметите и можете попытаться тронуть резистор пальцами.

Как наладить импульсный блок питания?

Собственно, блок питания, собранный на основе исправного электронного балласта, особой наладки не требует.

Его нужно подключить к эквиваленту нагрузки и убедиться, что БП способен отдать расчетную мощность.

Во время прогона под максимальной нагрузкой, нужно проследить за динамикой роста температуры транзисторов и трансформатора. Если слишком сильно греется трансформатор, то нужно, либо увеличить сечение провода, либо увеличить габаритную мощность магнитопровода, либо и то и другое.

Если сильно греются транзисторы, то нужно установить их на радиаторы.

Если в качестве импульсного трансформатора используется домотанный дроссель от КЛЛ, а его температура превышает 60… 65ºС, то нужно уменьшить мощность нагрузки.

Каково назначение элементов схемы импульсного блока питания?


R0 – ограничивает пиковый ток, протекающий через диоды выпрямителя, в момент включения. В КЛЛ также часто выполняет функцию предохранителя.

VD1… VD4 – мостовой выпрямитель.

L0, C0 – фильтр питания.

R1, C1, VD2, VD8 – цепь запуска преобразователя.

Работает узел запуска следующим образом. Конденсатор C1 заряжается от источника через резистор R1. Когда напряжения на конденсаторе C1 достигает напряжения пробоя динистора VD2, динистор отпирается сам и отпирает транзистор VT2, вызывая автоколебания. После возникновения генерации, прямоугольные импульсы прикладываются к катоду диода VD8 и отрицательный потенциал надёжно запирает динистор VD2.

R2, C11, C8 – облегчают запуск преобразователя.

R7, R8 – улучшают запирание транзисторов.

R5, R6 – ограничивают ток баз транзисторов.

R3, R4 – предотвращают насыщение транзисторов и исполняют роль предохранителей при пробое транзисторов.

VD7, VD6 – защищают транзисторы от обратного напряжения.

TV1 – трансформатор обратной связи.

L5 – балластный дроссель.

C4, C6 – разделительные конденсаторы, на которых напряжение питания делится пополам.

TV2 – импульсный трансформатор.

VD14, VD15 – импульсные диоды.

C9, C10 – конденсаторы фильтра.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!