Компьютер. Радиоэлектроника. Блоки питания. Справочники. Источники питания. Радиосвязь

Принцип работы полевого транзистора с изолированным затвором. Схемы включения транзистора полевого

В полупроводниковой электронике наряду с биполярными транзисторами находят применение транзисторы, управляемые электрическим полем , одной из положительных особенностей которых является большое входное сопротивление (составляет 1-10 МОм и более). Такие транзисторы получили название полевых (униполярных ).

Устройство и принцип действия

Полевыми транзисторами называют полупроводниковые приборы, в которых создание электрического тока обусловлено перемещением носителей заряда одного знака под действием продольного электрического поля , а управление выходным током основано на модуляции сопротивления полупроводникового материала поперечным электрическим полем .

Принцип работы полевых транзисторов может быть основан:

На зависимости сопротивления полупроводника от сечения его проводящей области (чем меньше сечение - тем меньше ток; реализован в полевых транзисторах с управляющим р-п- переходом);

На зависимости проводимости полупроводника от концентрации основных носителей (реализован в полевых транзисторах с изолированным затвором структуры металл-диэлектрик-полупроводник (МДП-транзисторы)).

Полевой транзистор с управляющим р-п- переходом (ПТУП) представляет собой тонкую полупроводниковую пластину с одним р-п -переходом и с невыпрямляющими контактами по краям. Электропроводность материала пластины может быть п -типа или р -типа. В качестве примера рассмотрим транзистор, у которого основная пластина состоит из полупроводника n -типа (рисунок 1.32).

Рисунок 1.32 - Структура полевого транзистора с управляющим р-п -переходом

Основными областями в структуре полевого транзистора с управляющим р-п- переходомявляются:

Область истока - область, от которой начинают перемещение носители зарядов;

Область стока - область, к которой перемещаются носители;

Область затвора - область, с помощью которой осуществляется управление потоком носителей;

Область канала - область, через которую перемещаются носители.

Выводы от соответствующих областей транзистора имеют аналогичные названия: исток (И), сток (С) и затвор (3) (рисунок 1.32).

На рисунке 1.33 показаны условные графические обозначения полевых транзисторов с управляющим р-п- переходом: с каналом п -типа (рисунок 1.33, а ) и каналом р -типа (рисунок 1.33, б ).


а б

Рисунок 1.33 - УГО полевых транзисторов с управляющим р-п -переходом

Рассмотрим принцип функционирования ПТУП. Источники напряжения подключают к транзистору таким образом, чтобы между электродами стока и истока протекал электрический ток, а напряжение, приложенное к затвору, смещало электронно-дырочный переход в обратном направлении .


На рисунке 1.34 показан способ подключения источников напряжения к выводам ПТУП с каналом п -типа.

Рисунок 1.34 - Подключение источников напряжения к выводам ПТУП

Под действием напряжения источника Е СИ электроны будут перемещаться от истока к стоку, обеспечивая во внешней цепи ток стока I C .

Концентрации носителей зарядов в полупроводниковом материале канала и затвора выбраны таким образом, что при подаче обратносмещающего напряжения между затвором и истоком р-п -переход будет расширяться в область канала. Это приводит к уменьшению площади поперечного сечения проводящей части канала и, следовательно, к уменьшению тока стока I C .

Сопротивление области, расположенной под электрическим переходом, в общем случае зависит от напряжения на затворе . Это обусловлено тем, что размеры перехода увеличиваются с повышением приложенного к нему обратного напряжения, а увеличение области, обедненной носителями заряда, приводит к повышению электрического сопротивления канала (и, соответственно, к уменьшению тока, протекающего в канале).

Таким образом, работа полевого транзистора с управляющим p-n-переходом основана на изменении сопротивления канала за счет изменения размеров области, обедненной основными носителями заряда, которое происходит под действием приложенного к затвору обратного напряжения .

Напряжение между затвором и истоком, при котором канал полностью перекрывается и ток стока достигает минимального значения (I C » 0), называют напряжением отсечки (U отс ) полевого транзистора.

В отличие от ПТУП, у которых затвор имеет электрический контакт с каналом, в полевых транзисторах с изолированным затвором (ПТИЗ) затвор представляет собой тонкую пленку металла, изолированного от полупроводника. В зависимости от вида изоляции различают МДП- и МОП-транзисторы (соответственно, металл - диэлектрик - полупроводник и металл - оксид - полупроводник, например двуокись кремния SiO 2).

В исходном состоянии канал ПТИЗ может быть обеднен носителями зарядов или обогащен ими. В зависимости от этого различают два типа полевых транзисторов с изолированным затвором: МДП-транзисторы со встроенным каналом (рисунок 1.35, а ) (канал создается при изготовлении) и МДП-транзисторы с индуцированным каналом (рисунок 1.35, б ) (канал возникает под действием напряжения, приложенного к управляющим электродам). В ПТИЗ имеется дополнительный вывод от кристалла, на котором выполнен прибор (рисунок 1.35), называемого подложкой.



а б

Рисунок 1.35 - Устройство полевых транзисторов с изолированным затвором

В ПТИЗ электроды стока и истока располагаются по обе стороны от затвора и имеют непосредственный контакт с полупроводниковым каналом.

Канал называется встроенным , если он изначально обогащен носителями заряда. В этом случае управляющее электрическое поле будет приводить к обеднению канала носителями зарядов. Если канал изначально обеднен носителями электрических зарядов, то он называется индуцированным . При этом управляющее электрическое поле (между затвором и истоком) будет обогащать канал носителями электрических зарядов (то есть, повышать его проводимость).

Проводимость канала может быть электронной или дырочной . Если канал имеет электронную проводимость, то он называется п -каналом. Каналы с дырочной проводимостью называются р -каналами. В результате этого различают четыре типа полевых транзисторов с изолированным затвором : с каналом п - либо р -типов, каждый из которых может иметь индуцированный или встроенный канал. Условные графические обозначения названных типов полевых транзисторов представлены на рисунке 1.36.

Управляющее напряжение в ПТИЗ можно подавать как между затвором и подложкой , так и независимо на подложку и затвор . Рассмотрим в качестве примера принцип управления током в полевых транзисторах, структуры которых показаны на рисунке 1.35.



Рисунок 1.36 - УГО полевых транзисторов с изолированным затвором

Если на затвор подать положительное напряжение, то под влиянием образующегося электрического поля у поверхности полупроводника (рисунок 1.35, б ) появляется канал п -типа за счет отталкивания дырок от поверхности в глубь полупроводника. В транзисторе со встроенным каналом (рисунок 1.35, а ) происходит расширение уже имеющегося канала при подаче положительного напряжения или сужение - при подаче отрицательного. Изменение управляющего напряжения меняет ширину канала и, соответственно, сопротивление и ток транзистора .

Существенным преимуществом ПТИЗ перед ПТУП является , достигающее значений 10 10 - 10 14 Ом (у транзисторов с управляющим р-п -переходом - 10 7 - 10 9 Ом).

Важным преимуществом полевых транзисторов перед биполярными является малое падение напряжения на них при коммутации слабых сигналов.

Кроме этого следует выделить такие достоинства, как:

- высокое входное сопротивление ;

- малые шумы ;

- простота изготовления ;

- отсутствие в открытом состоянии остаточного напряжения между истоком и стоком открытого транзистора .

Вольт-амперные характеристики и основные параметры полевых транзисторов

Из рассмотренного ранее следует, что всего существует шесть типов полевых транзисторов. Их типовые передаточные характеристики приведены на рисунке 1.37. Пользуясь этими характеристиками, можно установить полярность управляющего напряжения, направление тока в канале и диапазон изменения управляющего напряжения. Из всех приведенных разновидностей транзисторов в настоящее время не выпускаются только ПТИЗ со встроенным каналом р -типа.



Рисунок 1.37 - Передаточные характеристики полевых транзисторов

Рассмотрим некоторые особенности этих характеристик. Все характеристики полевых транзисторов с каналом п -типа расположены в верхней половине графика и, следовательно, имеют положительный ток, что соответствует положительному напряжению на стоке. Наоборот, все характеристики приборов с каналом р -типа расположены в нижней половине графика и, следовательно, имеют отрицательное значение тока и отрицательное напряжение на стоке. Характеристики ПТУП при нулевом напряжении на затворе имеют максимальное значение тока, которое называется начальным I С нач . При увеличении запирающего напряжения ток стока уменьшается и при напряжении отсечки U отс становится близким к нулю.

Характеристики ПТИЗ с индуцированным каналом при нулевом напряжении на затворе имеют нулевой ток. Появление тока стока в таких транзисторах происходит при напряжении на затворе больше порогового значения U пор . Увеличение напряжения на затворе приводит к увеличению тока стока.

Характеристики ПТИЗ со встроенным каналом при нулевом напряжении на затворе имеют начальное значение тока I С. нач . Такие транзисторы могут работать как в режиме обогащения, так и в режиме обеднения. При увеличении напряжения на затворе канал обогащается и ток стока растет, а при уменьшении напряжения на затворе канал обедняется и ток стока снижается.

На рисунке 1.38 приведены выходные вольт-амперные характеристики ПТУП с каналом n -типа. Характеристики других типов транзисторов имеют аналогичный вид, но отличаются напряжением на затворе и полярностью приложенных напряжений.



Рисунок 1.38 - Выходные ВАХ ПТУП

На ВАХ полевого транзистора можно выделить две области: линейную и насыщения .

В линейной области ВАХ вплоть до точки перегиба представляют собой прямые линии, наклон которых зависит от напряжения на затворе. В области насыщения вольт-амперные характеристики идут практически горизонтально, что позволяет говорить о независимости тока стока от напряжения на стоке. В этой области выходные характеристики полевых транзисторов всех типов сходны с характеристиками электровакуумных пентодов. Особенности этих характеристик обуславливают применение полевых транзисторов. В линейной области полевой транзистор используется как сопротивление , управляемое напряжением на затворе , а в области насыщения - как усилительный элемент .

Максимальное напряжение, прикладываемое между стоком и истоком полевого транзистора, для каждого типа транзисторов различно. Но в общем случае, как показано на рисунке 1.39, при превышении некоторого значения U СИ проб резко возрастает ток стока, что может привести к выходу из строя транзистора в результате пробоя.

Рисунок 1.39 - Семейство выходных ВАХ полевого транзистора

К основным параметрам полевых транзисторов относятся:

Крутизна стокозатворной характеристики

. (1.28)

Типовые значения: S = 0,1-500 мА/В;

Крутизна характеристики по подложке

. (1.29)

Типовые значения: S п = 0,1-1 мА/В;

Начальный ток стока I С нач - ток стока при нулевом напряжении U ЗИ .

У транзисторов с управляющим р -п -переходом I C нач = 0,2-600 мА, со встроенным каналом - I С нач = 0,1-100 мА, с индуцированным каналом - I С нач = 0,01-0,5 мкА;

Напряжение отсечки U ЗИ отс (типовые значения U ЗИ отс = 0,2-10 В);

Сопротивление сток - исток в открытом состоянии R СИ отк (типовые значения R СИ отк = 2-300 Ом);

Остаточный ток стока I С ост - ток стока при напряжении U ЗИ отс (I С ост = 0,001-10 мА);

Максимальная частота усиления f p - частота, на которой коэффициент усиления по мощности равен единице (типовые значения f p - десятки - сотни МГц).

Вне зависимости от принципа работы, полупроводниковый транзистор содержит в себе монокристалл из основного полупроводникового материала, чаще всего это - кремний, германий, арсенид галлия. В основной материал добавлены, легирующие добавки для формирования p-n перехода(переходов), металлические выводы.

Кристалл помещается в металлический, пластиковый или керамический корпус, для защиты от внешних воздействий. Однако, существуют также и бескорпусные транзисторы.

Принцип работы биполярного транзистора.

Биполярный транзистор может быть либо p-n-p, либо n-p-n в зависимости от чередования слоев полупроводника в кристалле. В любом случае выводы называются - база, коллектор и эмиттер. Слой полупроводника, соответствующий базе заключен между слоями эмиттера и коллектора. Он имеет принципиально очень малую ширину. Носители заряда движутся от эмиттера через базу - к коллектору. Условием возникновения тока между коллектором и эмиттером является наличие свободных носителей в области базы. Эти носители проникают туда при возникновении тока эмиттер-база. причиной которого может являться разность напряжения между этими электродами.

Т.е. - для нормальной работы биполярного транзистора в качестве усилителя сигнала всегда необходимо присутствие напряжения некого минимального уровня, для смещения перехода эмиттер-база в прямом направлении. Прямое смещение перехода база-эмиттер приоткрывая транзистор, задает так называемую - рабочую точку режима. Для гармоничного усиления сигнала по напряжению и току используют режим - А. В этом режиме напряжение между коллектором и нагрузкой, примерно равно половине питающего напряжения - т. е выходное сопротивление транзистора и нагрузки примерно равны. Если подавать теперь на переход база - эмиттер сигнал переменного тока, СОПРОТИВЛЕНИЕ эмиттер - коллектор будет изменяться, графически повторяя форму входного сигнала. Соответственно, то же будет происходить и с током через эмиттер к коллектору протекающим. Причем амплитуда тока будет большей, нежели амплитуда входного сигнала - будет происходить усиление сигнала.

Если увеличивать напряжение смещения база - эмиттер дальше, это приведет к росту тока в этой цепи, и как результат - еще большему росту тока эмиттер - коллектор. В конце, концов ток перестает расти - транзистор переходит в полностью открытое состояние(насыщения). Если затем убрать напряжение смещения - транзистор закроется, ток эмиттер - коллектор уменьшится, почти исчезнет. Так транзистор может работать в качестве электронного ключа . Этот режим наиболее эффективен в отношении управления мощностями, при протекании тока через полностью открытый транзистор величина падения напряжения минимальна. Соответственно малы потери тока и нагрев переходов транзистора.

Существует три вида подключения биполярного транзистора. С общим эмиттером (ОЭ) - осуществляется усиление как по току, так и по напряжению - наиболее часто применяемая схема.
Усилительные каскады построенные подобным образом, легче согласуются между собой, так как значения их входного и выходного сопротивления относительно близки, если сравнивать с двумя остальными видами включения (хотя иногда и отличаются в десятки раз).

С общим коллектором (ОК) осуществляется усиление только по току - применяется для согласования источников сигнала с высоким внутренним сопротивлением(импендансом) и низкоомными сопротивлениями нагрузок. Например, в выходных каскадах усилителей и контроллеров.

С общей базой (ОБ) осуществляется усиление только по напряжению. Имеет низкое входное и высокое выходное сопротивление и более широкий частотный диапазон. Это позволяет использовать подобное включение для согласования источников сигнала с низким внутренним сопротивлением(импендансом) с последующим каскадом усиления. Например - в входных цепях радиоприемных устройств.

Принцип работы полевого транзистора.


Полевой транзистор, как и биполярный имеет три электрода. Они носят названия - сток, исток и затвор. Если на затворе отсутствует напряжение, а на сток подано положительное напряжение относительно истока, то между истоком и стоком через канал течет максимальный ток.

Т. е. - транзистор полностью открыт. Для того, что бы его изменить, на затвор подают отрицательное напряжение, относительно истока. Под действием электрического поля (отсюда и название транзистора) канал сужается, его сопротивление растет, а ток через него уменьшается. При определенном значении напряжения канал сужается до такой степени, что ток практически исчезает - транзистор закрывается.

На рисунке изображено устройство полевого транзистора с изолированным затвором(МДП).


Если на затвор этого прибора не подано положительное напряжение, то канал между истоком и стоком отсутствует и ток равен нулю. Транзистор полностью закрыт. Канал возникает при некотором минимальном напряжении на затворе(напряжение порога). Затем сопротивление канала уменьшается, до полного открывания транзистора.

Полевые транзисторы, как с p-n переходом (канальные), так и МОП (МДП) имеют следующие схемы включения: с общим истоком (ОИ) - аналог ОЭ биполярного транзистора; с общим стоком (ОС) - аналог ОК биполярного транзистора; с общим затвором (ОЗ) - аналог ОБ биполярного транзистора.

По рассеиваемой в виде тепла мощности различают:
маломощные транзисторы - до 100 мВт;
транзисторы средней мощности - от 0,1 до 1 Вт;
мощные транзисторы - больше 1 Вт.

Важные параметры биполярных транзисторов.

1. Коэффициент передачи тока(коэффициент усиления) - от 1 до 1000 при постоянном токе. С увеличением частоты постепенно снижается.
2. Максимальное напряжение между коллектором и эмиттером(при разомкнутой базе) У специальных высоковольтных транзисторов, достигает десятков тысяч вольт.
3.Предельная частота, до которой коэффициент передачи тока выше 1. До 100000 гц. у низкочастотных транзисторов, свыше 100000 гц. - у высокочастотных.
4.Напряжение насыщения эмиттер-коллектор - величина падения напряжения между этими электродами у полностью открытого транзистора.

Важные параметры полевых транзисторов.

Усилительные свойства полевого транзистора определяются отношением приращения тока стока к вызвавшему его приращению напряжения затвор - исток, т. е.

ΔI d /ΔU GS

Это отношение принято называть крутизной прибора, а по сути дела оно является передаточной проводимостью и измеряется в миллиамперах на вольт(мА /В).

Другие важнейшие параметры полевых транзисторов приведены ниже:
1. I Dmax - максимальный ток стока.

2.U DSmax - максимальное напряжение сток-исток.

3.U GSmax - максимальное напряжение затвор-исток.

4.Р Dmax - максимальна мощность, которая может выделяться на приборе.

5.t on - типовое время нарастания тока стока при идеально прямоугольной форме входного сигнала.

6.t off - типовое время спада тока стока при идеально прямоугольной форме входного сигнала.

7.R DS(on)max - максимальное значение сопротивления исток - сток в включенном(открытом) состоянии.


Использование каких - либо материалов этой страницы, допускается при наличии ссылки на сайт

1.5. Полевые транзисторы, принцип их работы

Наряду с биполярными транзисторами нашли применение полевые транзисторы, в которых рабочие носители заряда переносятся по каналу, формируемому в полупроводнике n или p типа таким образом, что они не проходят через границыp иnслоев. По способу формирования канала эти приборы подразделяются на транзисторы сp-n переходом, со встроенным каналом и индуцируемым каналом. Два последних типа относятся к МДП-транзисторам.

В отличие от биполярного транзистора, где происходит токовое управление потоком рабочих носителей заряда, в полевом транзисторе управление потоком осуществляется электрическим полем, что и дало наименование прибору. Преимуществом полевых транзисторов является весьма малый уровень мощности, который потребляется для управления потоком, поскольку ток входной цепи практически равен нулю. Однако эти транзисторы уступают биполярным по уровню выходной мощности.

Рис.1.11. Структура полевого транзистора

с p - n переходом

Структура транзистора с p-n переходом схематически представлена на рис.1.11. Прибор имеет три электрода: исток (аналог эмиттера в биполярном транзисторе), сток (аналог коллектора) и затвор (аналог базе). На рис.1.11 показано включение этого транзистора по схеме с общим истоком, аналогичной схеме ОЭ включения биполярного транзистора. Канал протекания рабочих носителей заряда (в рассматриваемом случае электронов), формируемый в полупроводникеn-типа, заключен между двумяp-n переходами. Канал с двух сторон снабжен двумя электродами: истоком, с которого носители заряда начинают движение, и стоком, где это движение заканчивается. Третий электрод, затвор, соединен сp-слоями. Между истоком и стоком приложено напряжениеU, обеспечивающее перенос носителей заряда между этими электродами. Управляющим (входным) напряжением являетсяU. На затвор подается “минус” относительно истока. Таким образом,p-n переход находится в закрытом состоянии, что обусловливает малую величину тока в цепи затвора. При увеличении отрицательного значения напряженияUпроисходит увеличение шириныp-n перехода за счетn- слоя канала, а тем самым уменьшение ширины канала (см. рис.1.12,а). В результате происходит увеличение сопротивления канала, что и обеспечивает управление потоком электронов.


Рис.1.12. Сужение канала полевого транзистора с p - n переходом при приложении напряжений: а - U, б - U

Напряжение Uтакже изменяет ширину канала за счет изменения шириныp-n перехода. Однако, поскольку оно равномерно приложено по длине канала, то его ширина уменьшается по мере приближения к стоку, к которому подведен “плюс” (см. рис.1.12,б). Очевидно, степень уменьшения ширины канала, а, следовательно, его сопротивление будет увеличиваться при увеличении напряженияU. Этим объясняется вид выходной, стоковой характеристики, приведенной на рис.1.13. При малых значениях напряженияUобусловленное этим напряжением уменьшение ширины канала не существенно. В данных условиях на движения носителей заряда в канале оказывает влияние только напряжение между стоком и истоком, в результате чего ток стокаI резко увеличивается с ростом U. При больших значениях напряжения Uток носителей заряда находится под влиянием двух противодействующих факторов. С увеличением напряжения, с одной стороны, увеличивается скорость переноса носителей заряда от истока к стоку, а с другой стороны, - увеличивается сопротивление канала. В результате величина тока стока лишь немного растет при увеличении напряженияU, в приборе устанавливается режим насыщения, ограничивающийся сверху пробивным напряжениемU си проб . Режимы пробоя на рис.1.13 (а также на рис.1.15) не указаны. Увеличение отрицательного напряженияU увеличивает сопротивление канала, что обусловливает смещение вольт-амперной характеристики в область малых значений токаI. При этом также уменьшается величина напряжения пробоя.

Рис.1.13. Стоковая характеристика полевого

транзистора с p - n переходом

Наименование МДП-транзисторы (“металл – диэлектрик – проводник”) связано с конструктивными особенностями этих приборов. Они отражены на рис.1.14, на котором приведена схема конструкции транзистора с встроенным каналом. На поверхности подложки, которая выполнена из полупроводника типа p, создается канал n-типа с областями истока и стока. Полупроводник покрыт окисной пленкой, на которую наносится металлическая пленка, выполняющая функцию затвора. Таким образом, канал оказывается изолированным от затвора диэлектрической, окисной пленкой. В общем случае МДП-транзистор имеет четыре электрода. Четвертый электрод соединен с подложкой. Схема включения такого транзистора показана на рис.1.14.

Рис.1.14. Структура МДП-транзистора

Технология изготовления МДП-транзисторов с индуцированным каналом обусловила их широкое применение в составе микросхем. В таких транзисторах специально канал не создается. Он формируется (индуцируется) на поверхности подложки при положительном напряжении затвор- исток, когда электрическое поле затвора вытягивает из подложки электроны, за счет которых создается канал протекания тока стока. Очевидно, в МДП-транзисторе с индуцированным каналом при нулевом напряжении Uток стока отсутствует, а с увеличением напряжения затвор-исток увеличивается ток стока, что иллюстрируется рис.1.15, на котором приведена стоковая характеристика такого прибора.

Рис.1.15. Стоковые характеристики МДП-транзистора

с индуцированным каналом

Следует отметить, что в биполярном транзисторе ток коллектора также увеличивается с увеличением входного напряжения (см. рис.1.8 и 1.9). Однако, начальные участки вольт-амперных характеристик выходных цепей биполярных и полевых транзисторов отличаются. Если в биполярном транзисторе в области малых напряжений U КЭ наклон вольт-амперных характеристик не зависит от тока базы, т.е. от входного напряжения, то в полевом транзисторе, как видно из рис.1.15, эта зависимость существенна. Принципы работы МДП-транзисторов были рассмотрены на примере приборов сn-каналом. Аналогичным образом функционируют и транзисторы сp-каналом, в которых рабочими носителями заряда являются дырки, а подложка выполнена из полупроводникового материалаn-типа. В таких приборах направление токов и полярность напряжений будут противоположны тем, которые имеются у приборов сn-каналом. На рис.1.16 приведены схемные обозначения полевых транзисторов.


Рис.1.16. Схемные обозначения полевых транзисторов:

1 - транзистор с p - n переходом: с n -каналом,

2 - транзистор с p - n переходом и с p -каналом,

3 - МДП-транзистор с встроенным n -каналом,

4 - МДП-транзистор с встроенным p - каналом,

5 - МДП-транзистор с индуцированным n -каналом,

6 - МДП-транзистор с индуцированным p - каналом

Входное и выходное сопротивления полевых транзисторов, в отличие от биполярных, имеют существенную емкостную компоненту. Это учитывается схемой замещения для переменных токов и напряжений. Наиболее распространенная схема замещения полевого транзистора приведена на рис.1.17, в которой отражено наличие трех межэлектронных емкостей: С зи – затвор – исток,С си – сток – исток,С зс – затвор – сток. Первые две обусловлены, в основном, барьерной емкостью закрытогоp-n- перехода, примыкающего как к истоку, так и к стоку. Поэтому их величины, составляющие 10 – 40 пФ, в три – пять раз превышают величину емкости сток – исток.

Рис.1.17. Схема замещения полевого транзистора

Наличие в схеме источника тока Su вх отражает зависимость выходного тока от входного напряжения, гдеS– крутизна передаточной характеристики, определяемая соотношением

S =

.

Зависимость выходного тока от напряжения сток – исток учитывается сопротивлением r i , величина которого определяется как

r i =

.

Величины параметров Sи r i рассчитываются с использованием стоковой характеристики транзистора.

Полевым транзистором называется полупроводниковый усилительный прибор, сопротивление которого может изменяться под действием электрического поля. Изменение сопротивления достигается изменением удельного электрического сопротивления слоя полупроводника или изменением объема полупроводника, по которому проходит электрический ток.

В работе полевых транзисторов используются различные эффекты, такие, как изменение объема р -п -перехода при изменении действующего на нем запирающего напряжения; эффекты обеднения, обогащения носителями зарядов или инверсии типа проводимости в приповерхностном слое полупроводника. Полевые транзисторы иногда называют униполярными , потому что ток, протекающий через них, обусловлен носителями только одного знака. Полевые транзисторы еще называют канальными транзисторами, поскольку управляющее работой транзистора электрическое поле проникает в полупроводник относительно неглубоко, и все процессы протекают в тонком слое, называемом каналом .

Управляющая цепь полевого транзистора практически не потребляет ток и мощность. Это позволяет усиливать сигналы от источников, обладающих очень большим внутренним сопротивлением и малой мощностью. Кроме того, это дает возможность размещать сотни тысяч транзисторов на одном кристалле микросхемы.

Полевые транзисторы с управляющим р-п-переходом


Полевой транзистор может быть изготовлен в виде пластинки полупроводника (с п- или р -проводимостью), в одну из поверхностей которой вплавлен слой металла, называемый затвором , образующий плоский р-п -переход (рис. 5.1). К нижнему и верхнему торцам пластинки присоединяются выводы, называемые соответственно истоком и стоком. Если на затвор подается напряжение запирающей полярности (положительное на п -затвор и отрицательное на р -затвор), то в зависимости от его значения в канале (р-п -переходе) возникает обедненный носителями заряда слой, являющийся практически изолятором.

Изменяя напряжение на затворе от нуля до некоторого достаточно большого напряжения, называемого напряжением отсечки (напряжением запирания , или пороговым напряжением , см. рис. 5.6), можно так расширить объем полупроводника, занимаемого р-п -переходом, что он займет весь канал и перемещение носителей заряда между истоком и стоком станет невозможным. Транзистор полностью закроется (рис. 5.2).

В отличие от биполярных транзисторов, управляемых током, полевые транзисторы управляются напряжением, и, поскольку это напряжение приложено к управляющему р-п -переходу в обратной (запирающей) полярности, то ток в цепи управления практически не протекает (при напряжении 5 В ток управления не превышает 10 -10 А).

Полевые транзисторы с изолированным затвором

полевые транзисторы с индуцированным каналом

На рис. 5.3 показано устройство полевого транзистора с изолированным затвором, называемого МДП-транзистором . Это название обусловлено конструкцией: затвор выполнен из металла (М) и отделен тонким слоем диэлектрика (Д) от полупроводника (П), из которого сделан транзистор. Если транзистор изготовлен из кремния, то в качестве диэлектрика используется тонкая пленка оксида кремния. В этом случае на­звание изменяется на МОП-транзистор (металл-оксид-полупроводник).

Показанный на рис. 5.3 слева транзистор изготовлен на основе пластинки (подложки , или основания ) из кремния с р -проводимостью. На поверхности пластинки диффузионным способом получены две области с п -проводимостью (исток и сток), разделенные областью п -канала, имеющей преобладающую р -проводимость. Вследствие этого при подаче на транзистор напряжения ток между истоком и стоком протекать не будет, ибо переходы сток-основание и исток-основание образуют два встречно включенных р‑п‑ перехода, один из которых будет закрыт при любой полярности приложенного напряжения.

Однако, если на поверхностный слой р -полупроводника подействовать достаточно сильным электрическим полем, приложив между затвором и основанием напряжение положительной полярности, то между истоком и стоком начнет протекать ток. Это объясняется тем, что из приповерхностного слоя полупроводника, расположенного под затвором, электрическим полем будут оттесняться дырки и собираться электроны, образуя канал (с п -проводимостью, показанный на рис. 5.3 пунктирной линией), вследствие чего р‑п‑ переходы исток-канал и канал-исток перестанут существовать. Проводимость п‑ канала будет тем больше, чем больше напряжение, приложенное между затвором и основанием.

Транзистор рассмотренной конструкции называется МДП-транзистором с индуцированным каналом.

Основание обычно соединяется с истоком, но иногда напряжение на него подается отдельно, и тогда основание играет роль дополнительного затвора.

Если основание выполнено из п -кремния, исток и сток образованы сильно легированными областями с р‑ проводимостями, а в качестве изолятора используется оксид кремния, то получается МОП-транзистор с индуцированным р‑каналом (с проводимостью р ) (рис. 5.3 справа).

полевые транзисторы со встроенным каналом

МОП-транзисторы могут быть выполнены со встроенным каналом. Например, на рис. 5.4 слева приведена схема устройства такого транзистора с п -каналом. Основание выполнено из р -кремния, а исток и сток имеют п -проводимость и получены диффузионным способом. Исток и сток соединены сравнительно тонким каналом с незначительной р‑ проводимостью.

Если основание сделано из п -кремния, а исток и сток - из р -кремния, то транзистор имеет встроенный р-канал (рис. 5.4 справа).

Работу п -канального МОП-транзистора можно пояснить так. Если на затвор подано отрицательное (относительно основания) напряжение, то электроны проводимости вытесняются из п -канала в основание, и проводимость канала уменьшается, вплоть до полного обеднения и запирания канала.

При подаче на затвор положительного напряжения п -канал обогащается электронами, и проводимость его увеличивается (рис.5.6).

Классификация и характеристики полевых транзисторов

Полевые транзисторы бывают обедненного и обогащенного типа. К первым относятся все транзисторы с р‑п -переходом и п -канальные МОП-транзисторы обедненного типа. МОП-транзисторы обогащенного типа бывают как п -канальными, так и р -канальными (рис. 5.5).

Транзисторы обогащенного и обедненного типа отличаются только значением так называемого порогового напряжения , получаемого экстраполяцией прямолинейного участка характеристики (рис. 5.6.).

Выходными характеристиками полевого транзистора называются зависимости тока стока от напряжения сток-исток для различных значений напряжения затвор-исток.

Полевой транзистор является очень хорошим прибором с точки зрения выходной проводимости - при постоянном напряжении затвор-исток ток стока почти не зависит от напряжения (за исключением области малых напряжений сток-исток). На рис. 5.7 показаны типичные зависимости i с от u си для ряда значений u зи.

Транзистор (transistor, англ.) – триод, из полупроводниковых материалов, с тремя выходами, основное свойство которого – сравнительно низким входным сигналом управлять значительным током на выходе цепи. В радиодеталях, из которых собирают современные сложные электроприборы, используются полевые транзисторы. Их свойства позволяют решать задачи по выключению или включению тока в электрической цепи печатной платы, или его усилению.

Что такое полевой транзистор

Полевой транзистор - это устройство с тремя или четырьмя контактами, в котором ток на двух контактах регулируется напряжением электрического поля на третьем. Поэтому их называют полевыми.

Контакты:

Полевой транзистор с п – р переходом – особый вид транзисторов, которые служат для управления током .

Он отличается от простого обычного тем, что ток в нем проходит, не пересекая зоны р — n перехода, зоны, образующейся на границы этих двух зон. Размер р — n зоны регулируется.

Полевые транзисторы, их виды

Полевые транзисторы с п – р переходом делят на классы:

  1. По типу канала проводника: n или р. От канала зависит знак, полярность, сигнала управления. Она должна быть противоположна по знаку n -зоне.
  2. По структуре прибора: диффузные, сплавные по р – n — переходом, с затвором Шоттки, тонкопленочные.
  3. По числу контактов: 3-х и 4-контактные. В случае 4-контактного прибора, подложка также исполняет роль затвора.
  4. По используемым материалам: германий, кремний, арсенид галлия.

Классы делятся по принципу работы:

  • устройство под управлением р — n перехода;
  • устройство с изолированным затвором или с барьером Шоттки.

Полевой транзистор, принцип работы

По-простому, как работает полевой транзистор с управляющим р-п переходом, можно сказать так: радиодеталь состоит из двух зон: р — перехода и п — перехода. По зоне п течет электрический ток. Зона р – перекрывающая зона своего рода вентиль. Если на нее сильно надавить, она перекрывает зону для прохождения тока и его проходит меньше. Или, если давление снизить пройдет больше. Такое давление осуществляют увеличением напряжения на контакте затвора, находящегося в зоне р.

Прибор с управляющим р — п канальным переходом - это полупроводниковая пластина с электропроводностью одного из этих типов. К торцам пластины подсоединены контакты: сток и исток, в середине - контакт затвора. Действие устройства основано на изменяемости толщины пространства р-п перехода. Поскольку в запирающей области почти нет подвижных носителей заряда, ее проводимость равна нулю . В полупроводниковой пластине, в области не под воздействием запирающего слоя, создается проводящий ток канал. При подаче отрицательного напряжения по отношению к истоку, на затвор создается поток, по которому истекают носители заряда.

В случае изолированного затвора, на нем расположен тонкий слой диэлектрика. Этот вид устройства работает на принципе электрического поля . Чтобы разрушить его достаточно небольшого электричества. Поэтому для защиты от статического напряжения, которое может достигать тысяч вольт, создают специальные корпуса приборов — они позволяют минимизировать воздействие вирусного электричества.

Зачем нужен полевой транзистор

Рассматривая работу сложной электронной техники, как работу полевого транзистора (как одного из компонентов интегральной схемы) сложно представить, что основных направления его работы пять:

  1. Усилители высоких частот.
  2. Усилители низких частот.
  3. Модуляция.
  4. Усилители постоянного тока.
  5. Ключевые устройства (выключатели).

На простом примере работу транзистора, как выключателя, можно представить как компоновку микрофона с лампочкой. Микрофон улавливает звук, от этого появляется электрический ток. Он поступает на запертый полевой транзистор. Своим присутствием ток включает устройство, включает электрическую цепь, к которой подключена лампочка. Лампочка загорается при улавливании звука микрофоном, но горит за счет источника питания, не связанного с микрофоном и более мощного.

Модуляция применяется для управления информационным сигналом. Сигнал управляет частотой колебания. Модуляция применяется для качественного звукового сигнала в радио, для передачи звукового ряда в телевизионных передачах, трансляции цвета и телевизионного сигнала высокого качества. Она применяется везде, где требуется работа с материалом высокого качества.

Как усилитель полевой транзистор упрощенно работает так: графически любой сигнал, в частности, звуковой ряд, можно представить в виде ломаной линии, где ее длина – это время, а высота изломов частота звука. Для усиления звука на радиодеталь подают мощное напряжение, которое приобретает необходимые частоты, но с более большими значениями, за счет подачи слабого сигнала на управляющий контакт. Другими словами, устройство пропорционально перерисовывает изначальную линию, но с более высокими пиковыми значениями.

Применение полевых транзисторов

Первым прибором, поступившим в продажу, где использовался полевой транзистор с управляющим p-n переходом, был слуховой аппарат . Его появление зафиксировано в пятидесятых годах прошлого века. В промышленных масштабах их применяли в телефонных станциях.

В современном мире, устройства применяют во всей электротехнике . Благодаря маленьким размерам и разнообразию характеристик полевого транзистора, встретить его можно в кухонной технике, аудио и телевизионной технике, компьютерах и электронных детских игрушках. Их применяются в системах сигнализации как охранных механизмов, так и пожарной сигнализации.

На заводах транзисторное оборудование применяется для регуляторов мощности станков . В транспорте от работы оборудования на поездах и локомотивов, до системы впрыска топлива частных автомобилей. В ЖКХ от систем диспетчеризации, до систем управления уличным освещением.

Одна из важнейших областей применения транзисторов – производство процессоров . По сути, весь процессор состоит из множества миниатюрных радиодеталей. Но при переходе на частоту работы выше 1,5 ГГц, они лавинообразно начинают потреблять энергию. Поэтому производители процессоров пошли по пути многоядерности, а не путем увеличения тактовых частот.

Плюсы и минусы полевых транзисторов

Полевые транзисторы своими характеристиками оставили далеко позади другие виды устройства. Широкое применение они нашли в интегральных схемах в роли выключателей.

  • каскад деталей расходует мало энергии;
  • усиление выше, чем у других видов;
  • высокая помехоустойчивость достигается отсутствием прохождения тока в затворе;
  • более высокая скорость включения и выключения – они могут работать на недоступных другим транзисторам частотах.
  • более низкая температура разрушения, чем у других видов;
  • на частоте 1,5 ггц, потребляемая энергия начинает резко возрастать;
  • чувствительность к статическому электричеству.

Характеристики полупроводниковых материалов, взятых за основу полевых транзисторов, позволили применять устройства в быту и производстве . На основе плевых транзисторов создали бытовую технику в привычном для современного человека виде. Обработка высококачественных сигналов, производство процессоров и других высокоточных компонентов невозможна без достижений современной науки.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!