Компьютер. Радиоэлектроника. Блоки питания. Справочники. Источники питания. Радиосвязь

Полевые транзисторы характеристики. Пробник полевых транзисторов

В радиолюбительских конструкциях все чаще встречаются полевые транзисторы (ПТ), особенно в схемах УКВ аппаратуры. Но многие отказываются от их сборки, хотя схемы простые, проверенные временем, так как в них применяются ПТ к которым предъявляются особые требования по описанию схем. В журналах и интернете описано много приборов и испытателей ПТ (5,6), но они сложны, ведь в домашних условиях сложно измерить основные параметры ПТ. Приборы для испытания ПТ очень дороги и покупать их ради подбора двух, трех ПТ нет смысла.

Схема испытателя для полевых транзисторов (уменьшенная)

В домашних условиях возможно измерить, приблизительно, основные параметры ПТ и подобрать их. Для этого необходимо иметь как минимум два прибора, одним из которых измеряют ток, а другим напряжение, и два источника питания. Собрав схему (1, 2) вначале необходимо резистором R1 установить нулевое напряжение на затворе VT1, движок R1 в нижнем положение резистором R2 установить напряжение сток-исток Uси VT1 по справочнику, для проверяемого транзистора, обычно 10-12 вольт. Затем подключают прибор PA2, переведенный в режим измерения тока, в цепь стока и снимают показание, Iс.нач это начальный ток стока, его еще называют током насыщения ПТ при заданном напряжение сток-исток и нулевом напряжение затвор-исток. Затем медленно перемещая движок R1 за показанием PA2 и как только ток упадет практически до нуля (10-20 мкА) измерить напряжение между затвором и истоком, данное напряжение будет напряжением отсечки Uотс..



Чтобы измерить крутизну характеристики SмА/В ПТ нужно снова устанавливают нулевое напряжение Uзи резистором R1, PA2 покажет Iс.нач. Резистором R1 так же медленно увеличивают напряжение Uзи до одного вольта по PA1, для упрощения расчета, PA2 покажет меньший ток Ic.измер. Если теперь разность двух показаний PA2 разделить на напряжение Uзи получившийся результат будет соответствовать крутизне характеристики:

SмА/В=Iс.нач - Iс.измер/Uзи.

Так проверяются транзисторы с управляющим с p-n переходом и каналом p-типа, для ПТ n-типа нужно поменять полярность включения Uпит на обратное.

Существуют также полевые транзисторы с изолированным затвором. Существуют две разновидности МДП-транзисторов с индуцированным и со встроенным каналами.

Транзисторы первого типа можно использовать только в режиме обогащения. Транзисторы второго типа могут работать как в режиме обеднения, так и в режиме обогащения канала. Поэтому полевые транзисторы с изолированным затвором часто называют МДП-транзисторами или МОП-транзисторами (металл - оксид- полупроводник).



В МОП-транзисторах с индуцированным каналом проводящий канал между сильнолегированными областями истока и стока и, следовательно, заметный ток стока появляются только при определенной полярности и при определенном значении напряжения на затворе относительно истока (отрицательного при р-канале и положительного при n-канале). Это напряжение называют пороговым (Uпор). Так как появление и рост проводимости индуцированного канала связаны с обогащением его основными носителями заряда, эти транзисторы могут работать только в режиме обогащения.

В МОП - транзисторах со встроенным каналом проводящий канал, изготавливается технологическим путем, образуется при напряжении на затворе равном нулю. Током стока можно управлять, изменяя значение и полярность напряжения между затвором и истоком. При некотором положительном напряжении затвор - исток транзистора с р - каналом или отрицательном напряжении транзистора с n -каналом ток в цепи стока прекращается. Это напряжение называют напряжением отсечки (Uотс). МОП - транзистор со встроенным каналом может работать как в режиме обогащения, так и в режиме обеднения канала основными носителями заряда.

Работа МОП-транзистора с индуцированным p-каналом . При отсутствии смещения (Uзи = 0; Uси = 0) приповерхностный слой полупроводника обычно обогащен электронами. Это объясняется наличием положительно заряженных ионов в пленке диэлектрика, что является следствием предшествующего окисления кремния и фотолитографической его обработки.

Напряжение на затворе, при котором индуцируется канал, называют пороговым напряжением Unoр. Так как канал возникает постепенно, по мере увеличения напряжения на затворе, то для исключения неоднозначности в его определении обычно задается определенное значение тока стока, при превышении которого считается, что потенциал затвора достиг порогового напряжения Unop.



В транзисторах с встроенным каналом ток в цепи стока будет протекать и при нулевом напряжении на затворе. Для прекращения его необходимо к затвору приложить положительное напряжение (при структуре с каналом p-типа), равное или большее напряжения отсечки Uотc.

При приложении отрицательного напряжения канал расширяется и ток увеличивается. Таким образом, МДП-транзисторы с встроенными каналами работают как в режиме обеднения, так и в режиме обогащения.

Иногда в структуре полевого МОП транзистора между истоком и стоком присутствует встроенный диод. На работу транзистора диод не влияет, поскольку в схему он включен в обратном направлении. В последних поколениях мощных МОП-транзисторов встроенный диод используется для защиты транзистора.

Основными параметрами полевых транзисторов считаются;

1 . Начальный ток стока Iс.нач - ток стока при напряжении между затвором и истоком, равном нулю. Измеряют при заданном для транзистора данного типа значении постоянного напряжения Uси.

2 . Остаточный ток стока Iс.ост - ток стока при напряжении между затвором и истоком, превышающем напряжение отсечки.

3 . Ток утечки затвора Iз.ут - ток затвора при заданном напряжении между затвором и остальными выводами, замкнутыми между собой.

4 . Обратный ток перехода затвор - сток Iзс.о - ток, протекающий в цепи затвор - сток при заданном обратном напряжении между затвором и стоком и разомкнутыми остальными выводами.

5 . Обратный ток перехода затвор - исток Iзи.о - ток, протекающий в цепи затвор - исток при заданном обратном напряжении между затвором и истоком и разомкнутыми остальными выводами.

6 . Напряжение отсечки Uотс - напряжение между затвором и истоком транзистора с р-n переходом или изолированным затвором, работающего в режиме обеднения, при котором ток стока достигает заданного низкого значения (обычно 10 мкА).

7 . Пороговое напряжение полевого транзистора Uпор - напряжение между затвором и истоком транзистора с изолированным затвором, работающего в режиме обогащения, при котором ток стока достигает заданного низкого значения (обычно 10 мкА).

8 . Крутизна характеристик полевого транзистора S - отношение изменения тока стока к изменению напряжения на затворе при коротком замыкании по переменному току на выходе транзистора в схеме с общим истоком.



Для этих измерений необходимо ввести еще и переключатель полярности напряжения между затвором и истоком. Комутируя этим переключателем полярность подаваемую на затвор проверяемого транзистора измеряют параметры ПТ. Процедура довольно долгая, а как быть если в наличие только один тестер. И в этом случае возможно проверить полевой транзистор, процесс проверки тот же что и описан выше, но только еще более длительный, так как нужно будет сделать очень много переключений и других операций. Такой способ для проверки и подборки ПТ не пригоден при покупке в магазинах и радиорынках.

Как известно собрать вольтметр постоянного тока намного проще чем миллиамперметр, имея одну и туже головку, а комбинированные приборы есть у каждого радиолюбителя, даже у начинающих. Собрав прибор по схеме приведенной на рисунке, можно значительно облегчить процедуру проверки ПТ во много раз. Данный прибор могут сделать даже начинающие радиолюбители не имеющие опыта работы с ПТ. Прибор питается от 9 вольт от стабилизированного преобразователя напряжения собранной по схеме из журнала Радио (3).

Принцип измерений параметров ПТ. Установив переключатели SA1-SA3, SB2 в нужное полжения, в зависимости от типа и канала проверяемого ПТ, подключают любой тестер, стрелочный или цифровой (предпочтительней), в гнезда XS1, XS2, переведенном в режим измерения постоянного тока, к гнездам XS3 подключить в соответствие с цоколем ПТ и включают прибор переключателем SA4.

Все компоненты прибора установлены в подходящий корпус, размер которого зависит от размеров компонентов и примененной головки PA1. На лицевой стороне расположены PA1, SA1-SA3, XS1-XS2, R1, R2 с соответствующими надписями обозначающими функции. Преобразователь установлен в корпусе прибора, из которого выведен разъем для подключения к батарейке GB1.

Детали пробника


PA1 - микроамперметр типа М4200 с током 300 мкА, со шкалой на 15 В, возможно использовать другие, от его габаритов завесит размер корпуса, при подборе R3, R4 при настройке, R1, R2 - СП4-1, СПО-1 сопротивлением от 4,7 кОм до 47 кОм, R3, R4 - МЛТ-0,25, С2-23 и другие. Переключатели SA1 - 3П12НПМ, 12П3Н,ПГ2, ПГ3, П2К, SB1 - П2К. Тумблеры SA2 - SA4 - МТ-1, П1Т-1-1 и другие.

Трансформатор ТР1 в преобразователе выполнен в ферритовом броневом магнитопроводе внешним диаметром 30 и высотой 18 мм. Обмотка I содержит 17 витков провода ПЭЛ 1,0, обмотка II - 2х40 витков провода ПЭЛ 0,23. Возможно использовать другой сердечник с соответствующим перерасчетом.

Транзисторы VT1 - КТ315, КТ3102, VT2, VT3 - КТ801А, КТ801Б, VT4 - КТ805Б и другие, диоды VD1, VD2 - КД522, КД521, VD4-VD7 - КД105, КД208, КД209 или диодный мост КЦ407, микросхема DD1 - К555ЛН1, К155ЛН1.

В качестве XS3 используется кроватка для микросхем установленная на печатной плате и распаянная под тип ПТ (расположение выводов) для того чтобы не загибать выводы ПТ или другой разъем распаянный соответствующим образом. Монтаж объемный. На дно (задняя крышка) установлена плата преобразователя.

Настройка испытателя полевых транзисторов

Налаживание прибора практически не требуется. Правильно собранный преобразователь, из исправных деталей, начинает работать сразу, выходное напряжение 15 В устанавливают подстроечным резистором R4 контролируя напряжение вольтметром.

Затем движки резисторов R1, R2 устанавливают в нижнее по схеме положение, что соответствует нулевым напряжениям. Переключатель SA3 переводят в положение 1,5 В, а SA2 в положение Uзи. Подключив контрольный вольтметр к движку R1 перемещают его контролируя показание PA1 по контрольному вольтметру и если оно отличается подбирают сопротивление резистора R3. После подбора резистора R3 переключают SA3 в положение 15 В и далее перемещают движок R3 контролируя напряжение и если оно также не соответствует подбирают R4. Таким образом настраивают внутренний вольтметр прибора. После всех настроек закрывают заднюю крышку, прибор готов к работе.



Как показывает практика, для радиолюбителя важны следующие положения:

1. Проверить исправность ПТ. Для этого обычно достаточно убедиться, что параметры его стабильны, не «плывут» и находятся в пределах справочных данных.

2. Выбрать по определенным характеристикам из имеющихся у радиолюбителя всего нескольких экземпляров ПТ те, что больше подходят для применения в собираемой схеме. Обычно здесь работает качественный принцип «больше - меньше».

Например, нужен полевой транзистор с большей S или меньшим напряжением отсечки. И из нескольких экземпляров выбирают тот, у которого лучше (больше или меньше) выбранный показател. Таким образом, высокая точность измеряемых параметров на практике часто не столь важна, как можно было бы думать.
Тем не менее, предлагаемый прибор позволяет с достаточно высокой точностью проверить работоспособность и важнейшие характеристики ПТ.

Работа с прибором

Перед включением прибора переключателем SA1 устанавливают тип канала, SB2 устанавливают в обогащенный режим, резисторы R1, R2 устанавливают в нулевые положения, подключают к гнездам XS1 и XS2 тестер переведенный в режим для измерения тока на предел который указан в справочнике для данного ПТ, цифровой тестер с автоматическим изменением предела предпочтителен так как не нужно будет переключать пределы при измерениях. Переводят SA2 в положение Uси, а SA3 в положение 15 В.

Вставляют полевой транзистор в разъем XS3 в соответствие с цоколем проверяемого ПТ. Включив прибор резистором R2 устанавливают напряжение сток-исток Uси указанное в справочнике для данного транзистора. Переводят SA2 в положение Uзи, а SA3 в 1,5 В. Нажимают кнопку SB1 "Измер." при этом тестер PA2 покажет какое то значение, например 0,8 мА на пределе 1 мА, это значение указывает начальный ток стока Iс.нач. Записывают это значение для данного ПТ. Затем медленно перемещают движок R1 "Uзи" контролируя при этом напряжение на затворе по PA1, напряжение Uзи увеличивают до тех пор пока ток стока Iс измеряемый тестером PA2 не уменьшится до минимального заданного как правило 10-20 мкА, переключая PA2 на пределы ниже. Как только ток уменьшится до заданного значения, снимают показание с PA1 (например 0,9 В), это напряжение является напряжением отсечки ПТ Uотс., его так же записывают.

Для измерения крутизну характеристики SмА/В устанавливают тестер PA2 на тот предел который был установлен первоначально для данного транзистора и уменьшают Uзи до нуля, PA2 покажет Iс.нач. Резистором R1 медленно увеличивают Uзи до 1 В по PA1, PA2 покажет меньший ток Iс.измер. Если теперь вычесть из Iс.нач Iс.измер это и будет соответствовать численному значению крутизны характеристики SмА/В ПТ. Цифровой тестер с автоматическим изменением пределов предпочтительнее.

Таким образом можно будет подобрать ПТ с близкими параметрами из одной партии с одинаковыми или разными буквенными индексами, ведь разные индексы указывают лишь на разброс параметров ПТ, так КП303А имеют Uотс. - 0,3-3,0 В, SмА/В - 1-4, а КП303В Uотс. - 1,0 - 4,0 В, SмА/В - 2-4, но некоторые ПТ с разными индексами могут иметь одинаковые значения при заданом напряжение сток-исток Uси. что не мало важно при подборке ПТ.

Измерение параметров полевых транзисторов МОП-типа с встроенным каналом, режим обеднения. Переключателем SA1 устанавливают тип канала, SB2 устанавливают в режим обеднения, резисторы R1, R2 устанавливают в нулевые положения, подключают к гнездам XS1 и XS2 тестер переведенный в режим для измерения тока на предел который указан в справочнике для данного ПТ. Переводят SA2 в положение Uси, а SA3 в положение 15 В. Вставляют ПТ в разъем XS3 в соответствие с цоколем проверяемого ПТ. У двузатворных или с подложкой ПТ второй затвор, подложку подключают к контакту корпус "К" разъема XS3. Резистором R2 устанавливают напряжение сток-исток Uси указанное в справочнике для данного транзистора. Затем переводят SA2 в положение Uзи, а SA3 в положение 1,5 В. PA2 переводят в режим измерения минимального тока. Включив прибор нажимают кнопку SB1, микроамперметр PA2 покажет какой-то ток это и будет начальный ток стока Iс.нач.

При увеличение напряжения Uзи ток стока Iс будет уменьшатся и при определенном значение станет минимальным около 10 мкА, снятое показания с РА2 будет напряжением отсечки Uотс.

Для проверки транзистора в режиме обогащения переключатель SB2 переводят в положение "Обогащения" и увеличивают напряжение на затворе Uзи при этом ток стока Iс будет увеличиваться.

Как было сказано выше, МОП-транзисторы с индуцированным каналом могут работать только в режиме обогащения. Измерение параметров полевых транзисторов МОП-типа с индуцированным каналом. Переключателем SA1 устанавливают тип канала, SB2 устанавливают в режим обогащения, резисторы R1, R2 устанавливают в нулевые положения, подключают к гнездам XS1 и XS2 тестер переведенный в режим для измерения тока на предел который указан в справочнике для данного ПТ. Переводят SA2 в положение Uси, а SA3 в положение 15 В. Вставляют ПТ в разъем XS3 в соответствие с цоколем проверяемого ПТ.

У двузатворных или с подложкой ПТ второй затвор, подложку подключают к контакту корпус "К" разъема XS3. Резистором R2 устанавливают напряжение сток-исток Uси указанное в справочнике для данного транзистора. Затем переводят SA2 в положение Uзи, а SA3 в положение 1,5 В. PA2 переводят в режим измерения минимального тока. Включив прибор нажимают кнопку SB1. При Uзи = 0 ток стока Iс = 0.

Увеличивая напряжение Uзи следят за изменением тока стока Iс и при некотором напряжение Uзи ток стока начнет увеличиваться это будет пороговым напряжением Uпор. При дальнейшем его увеличение будет увеличиваться ток стока Iс.

Данным прибором можно измерять параметры Iс.нач, Uотс., S ма/В ПТ средней и большой мощности, подав необходимое напряжение на внешний разъем XP1, по справочникам для данного ПТ, с добавлением необходимых пределов измерений внутренним вольтметром PA1, добавив необходимое число резисторов на переключатель SA3. Диоды VD5, VD6 при этом защищают преобразователь от внешнего напряжения.

Если не требуется измерений точных значений Iс.нач и Uотс., а только подобрать ПТ с близкими параметрами, можно вместо PA2 включить индикаторы применяемые в бытовой технике для контроля уровней сигналов, М4762, М68501, М4248, М4223 и подобные, добавив к данным индикаторам переключатель и шунты на разные токи. Все остальные измерения производят по описанному выше методу. Данным прибором пользуюсь уже более шести лет. Он очень помогает при конструирование аппаратуры на полевых транзисторах, где к ним применяются особые требования.

Литература:

1. Простейшие способы проверки исправности электрорадиоэлементов в ремонтных и любительских условиях, стр. 70, 300 практических советов. Бастанов В.Г. - Моск. рабочий 1986 г.
2. Измерение параметров и применение полевых транзисторов, - "Радио", 1969, №03, стр. 49-51
3. Стабилизированный преобразователь напряжения - Радио №11 1981 стр. 61 (за рубежом).
4. Занимательные эксперименты: некоторые возможности полевого транзистора - "Радио", номер 11, 1998г. Б.Иванов
5. Приставка для проверки транзисторов. Радио № 1 – 2004, стр. 58-59.
6. Испытатель полевых транзисторов - А. П. Кашкаров, А. Л. Бутов - Радиолюбителям схемы для дома стр. 242-246, МРБ-1275 2008г.
7. Измерение параметров полевых транзисторов, - "Радио", 2007, №09, стр. 24-26.
8. Меерсон А.М. Радиоизмерительная техника (3-е изд.). МРБ - Выпуск 0960 стр. 363-367. (1978)

Конструкцию прислал на конкурс:Слинченков Александр Васильевич г. Озерск, Челябинская обл.

Полупроводниковые приборы, работа которых основана на модуляции сопротивления полупроводникового материала поперечным электрическим полем, называются полевыми транзисторами . У них в создании электрического тока участвуют носители заряда только одного типа (электроны или дырки).

Полевые транзисторы бывают двух видов:

С управляющим p-n-переходом;

Со структурой металл-диэлектрик-полупроводник (МДП)

Транзистор с управляющим p-n-переходом представляет собой пластину (участок) из полупроводникового материала с электропроводностью p- либо n-типа, к торцам которой подсоединены электроды - сток и исток . Вдоль пластины выполнен электрический переход (p-n-переход или барьер Шоттки), от которого выведен электрод - затвор .

Внешние напряжения прикладываются так, что между электродами стока и истока протекает электрический ток, а напряжение, приложенное к затвору, смещает электрический переход в обратном направлении. Сопротивление области, расположенной под электрическим переходом, которая называется каналом , зависит от напряжения на затворе. Это обусловлено тем, что размеры перехода увеличиваются с повышением приложенного к нему обратного напряжения, а увеличение области, обедненной носителями заряда, приводит к повышению электрического сопротивления канала.

Таким образом, работа полевого транзистора с управляющим p-n-переходом основана на изменении сопротивления канала за счет изменения размеров области, обедненной основными носителями заряда, которое происходит под действием приложенного к затвору обратного напряжения. Основные носители заряда в канале начинают движение от истока и движутся к стоку. При подаче на затвор обратного напряжения канал может быть почти полностью перекрыт и тогда сопротивление между истоком и стоком очень высокое (десятки мегаом), ток Ic→0, а такое напряжение называют напряжением отсечки полевого транзистора UЗИ отс.

Ширина p-n-перехода зависит также от величины тока, протекающего через канал. Пусть UСИ > 0, тогда ток IC, протекающий через транзистор, создает падение напряжения, которое окажется запирающим для перехода затвор-канал. Это приводит к увеличению ширины p-n-перехода, т.е. уменьшению сечения канала и его проводимости. При этом ширины p-n-перехода увеличивается по мере приближения к области стока, где будет наибольшее падение напряжения, вызванное током IC на сопротивлении канала RСИ. У края около истока действует напряжение UЗИ, а у края около стока |UЗИ |+UСИ. При малых значениях напряжения UCИ и малом IC транзистор ведет себя как линейное сопротивление: увеличение UCИ приводит к линейному возрастанию IC и наоборот. По мере роста UCИ характеристика UЗИ = f(UCИ) становится нелинейной, что обусловлено сужением канала у стокового конца. При определенном значении тока наступает режим насыщения. Его возникновение связано с тем, что при большом напряжении UCИ канал стока стягивается в узкую горловину, наступает динамическое равновесие - при увеличении UCИ рост тока IC приводит к дальнейшему сужению канала и соответствующему уменьшению тока IC. Напряжение насыщенно зависит от UЗИ.



При дальнейшем увеличении напряжения UCИ у стокового конца наблюдается пробой p-n-перехода. Область ОА называют крутой областью характеристики, АВ - пологой или областью насыщения.

В усилительных каскадах транзистор работает на пологом участке характеристики. За точкой. В возникает пробой транзистора. Входная характеристика полевого транзистора с управляющим p-n-переходом представляет собой обратную ветвь вольтамперной характеристики p-n-перехода. Хотя ток затвора изменяется при изменении напряжения UCИ и достигает максимума при коротком замыкании выводов истока и стока (ток утечки затвора IЗ ут) им можно пренебречь. Изменение напряжения UЗИ не вызывает существенных изменений тока затвора, что характерно для обратного тока p-n-перехода.

При работе в пологой области вольтамперной характеристики ток стока при заданном напряжении UЗИ определяется выражением

Введем для количественной характеристики управляющего действия затвора понятие крутизны характеристики

Получаем

Таким образом, крутизна характеристики полевого транзистора уменьшается при увеличении напряжения, приложенного к его затвору.

Усилительные свойства полевых транзисторов характеризуются коэффициентом усиления

который связан с крутизной характеристики и внутренним сопротивлением уравнением

Дифференциальное внутреннее сопротивление транзистора.

Действительно, в общем случае IC = f(UCИ, UЗИ) и

Если при одновременном изменении UСИ и UЗИ ток IC = const, то dIC = 0, откуда

Схемы включения полевых транзисторов в усилительных каскадах:



Постоянное напряжение UCM обеспечивает получение заданного сопротивления канала RCИ и тока стока . При подаче входного усиливаемого напряжения Uвх потенциал затвора меняется, и, соответственно, меняются токи стока и истока, т.е. падение напряжения на нагрузочном резисторе.

Если R >> 1, то Δ>> за счет этого осуществляется усиление сигнала.

Основными преимуществами полевых транзисторов с управляющим p-n-переходом перед биполярными является высокое входное сопротивление …Ом, малые шумы, отсутствие остаточного напряжения между истоком и стоком открытого транзистора, малые нелинейные искажения.

МДП-транзисторы могут быть двух типов:

Со встроенными каналами

С индуцированными каналами.

Транзисторы первого типа могут работать как в режиме обеднения канала носителями заряда, так и в режиме обогащения. Транзисторы второго типа можно использовать только в режиме обогащения.

У МДП-транзисторов металлический затвор изолирован от полупроводника слоем диэлектрика и имеется дополнительный вывод от кристаллической пластинки - подложки.


Управляющее напряжение можно подавать как между затвором и подложкой, так и независимо на подложку и затвор. Под влиянием образующего электрического поля у поверхности полупроводника появляется канал p-типа за счет отталкивания электронов от поверхности вглубь полупроводника в транзисторе с индуцированным каналом. В транзисторе со встроенным каналом происходит расширение или сужение имевшегося канала под действием управляющего напряжения.

Существенным преимуществом МДП-транзисторов является высокое входное сопротивление, достигающее значений

МДП-транзисторы с диэлектриком из диоксида кремния SiO2 называются МОП-транзисторами. МОП-транзисторы с двумя изолированными затворами называются тетродными. Наличие второго затвора позволяет одновременно управлять током транзистора с помощью двух управляющих напряжений.

МДП-структуры специального назначения . Кроме рассмотренных полевых транзисторов, которые выпускаются в виде самостоятельных компонентов, применяется ряд МОП-структур со специфическими свойствами.

В структурах типа металл-нитрит-оксид-полупроводник (МНОП) диэлектрик под затвором - двухслойный: SiO2 - тонкий слой, Si3N4 - толстый слой. При подаче на затвор МНОП-структуры положительного напряжения (28 – 30 B) электроны из подложки туннелируют через тонкий слой SiO2 и захватываются в "ловушки" потенциала кристалла Si3N4. Появляются неподвижные отрицательно заряженные ионы. Созданный ими заряд повышает пороговое напряжение UЗИ пор1. Этот заряд может хранится несколько лет при отключении всех напряжений питания. Если на затвор подать отрицательное напряжение (28 – 30 B) , то накопленный заряд рассасывается. После этого пороговое напряжение для транзистора существенно уменьшается. На основе МНОП-структур выполняются запоминающие элементы, которые в зависимости от записанного в них "заряда" будут иметь малое или большое сопротивление при подаче одинакового напряжения UЗИ порядка 3 − 5B.

МОП-структуры с плавающим затвором и лавинной инжекцией имеют затвор, который выполнен из кристаллического кремния Si и не имеет электрических связей с другими частями структуры. При подаче высокого напряжения на сток или исток транзистора возникает лавинный пробой p-n-перехода, образованного в подложке. При этом электроны приобретают энергии, позволяющие им проникнуть в изолирующий слой и достигнуть затвора. На затворе появляется отрицательный заряд, который вследствие высоких изолирующих свойств SiO2 сохраняется на протяжении многих лет: уменьшается на 25% за 10 лет. Величину заряда выбирают такой, чтобы он обеспечил появление электропроводного канала, соединяющего сток и исток.

Транзистор становится неэлектропроводящим, если убрать электрический заряд с "плавающего" затвора. Для этого область затвора облучают ультрафиолетовым излучением. Мощность его должна быть достаточной для ионизации и возникновения в цепи затвора фототока, в результате чего электроны рекомбиниpуют с дырками и заряд исчезает. Облучение производят через кварцевые окошки в микросхемах.

В лавинно-инжекционных МОП-структурах с плавающим затвором имеется второй затвор. В них стирание информации может производится импульсами напряжения с амплитудой около 30B.

Рассмотренные МОП-структуры используются в микросхемах ПЗУ (постоянных запоминающих устройств), которые можно перепрограммировать.

Основные параметров полевых транзисторов(y-параметры):

1.Крутизна характеристики, проводимость прямой передачи. Она показывает, насколько ампер изменяется IС, если при постоянном UCИ UЗ изменяется на 1В.

2.Выходная проводимость (выходное сопротивление) :

Чаще используют понятие выходное (внутреннее) сопротивление:

3.Входное сопротивление:

4.Проводимость обратной связи:

Все эти параметры определяются по статическим характеристикам транзистора.

Кроме того, есть такой параметр, как статический коэффициент усиления (по напряжению). Он показывает во сколько раз увеличивается UCИ при увеличении UЗИ.

Силовые инверторы, да и многие другие электронные устройства, редко обходятся сегодня без применения мощных MOSFET (полевых) или . Это касается как высокочастотных преобразователей типа сварочных инверторов, так и разнообразных проектов-самоделок, схем коих полным полно в интернете.

Параметры выпускаемых ныне силовых полупроводников позволяют коммутировать токи в десятки и сотни ампер при напряжении до 1000 вольт. Выбор этих компонентов на современном рынке электроники довольно широк, и подобрать полевой транзистор с требуемыми параметрами отнюдь не является проблемой сегодня, поскольку каждый уважающий себя производитель сопровождает конкретную модель полевого транзистора технической документацией, которую всегда можно найти как на официальном сайте производителя, так и у официальных дилеров.

Прежде чем приступить к проектированию того или иного устройства, с применением названных силовых компонентов, всегда нужно точно знать, с чем имеешь дело, особенно когда выбираешь конкретный полевой транзистор. Для этого и обращаются к datasheet"ам. Datasheet представляет собой официальный документ от производителя электронных компонентов, в котором приводятся описание, параметры, характеристики изделия, типовые схемы и т.д.

Давайте же посмотрим, что за параметры указывает производитель в даташите, что они обозначают и для чего нужны. Рассмотрим на примере даташита на полевой транзистор IRFP460LC. Это довольно популярный силовой транзистор, изготовленный по технологии HEXFET.

HEXFET подразумевает такую структуру кристалла, когда в одном кристалле организованы тысячи параллельно-включенных МОП-транзисторных ячеек гексагональной формы. Это решение позволило значительно снизить сопротивление открытого канала Rds(on) и сделало возможным коммутацию больших токов. Однако, перейдем к обзору параметров, указанных непосредственно в даташите на IRFP460LC от International Rectifier (IR).

См.

В самом начале документа дано схематичное изображение транзистора, приведены обозначения его электродов: G-gate (затвор), D-drain (сток), S-source (исток), а также указаны его главные параметры и перечислены отличительные качества. В данном случае мы видим, что этот полевой N-канальный транзистор рассчитан на максимальное напряжение 500 В, сопротивление его открытого канала составляет 0,27 Ом, а предельный ток равен 20 А. Пониженный заряд затвора позволяет использовать данный компонент в высокочастотных схемах при невысоких затратах энергии на управление переключением. Ниже приведена таблица (рис. 1) предельно допустимых значений различных параметров в различных режимах.

    Id @ Tc = 25°C; Continuous Drain Current Vgs @ 10V - максимальный продолжительный, непрерывный ток стока, при температуре корпуса полевого транзистора в 25°C, составляет 20 А. При напряжении затвор-исток 10 В.

    Id @ Tc = 100°C; Continuous Drain Current Vgs @ 10V - максимальный продолжительный, непрерывный ток стока, при температуре корпуса полевого транзистора в 100°C, составляет 12 А. При напряжении затвор-исток 10 В.

    Idm @ Tc = 25°C; Pulsed Drain Current - максимальный импульсный, кратковременный ток стока, при температуре корпуса полевого транзистора в 25°C, составляет 80 А. При условии соблюдения приемлемой температуры перехода. На рисунке 11 (Fig 11) дается пояснение относительно соответствующих соотношений.

    Pd @ Tc = 25°C Power Dissipation - максимальная рассеиваемая корпусом транзистора мощность, при температуре корпуса в 25°C, составляет 280 Вт.

    Linear Derating Factor - с повышением температуры корпуса на каждый 1°C, рассеиваемая мощность возрастает еще на 2,2 Вт.

    Vgs Gate-to-Source Voltage - максимальное напряжение затвор-исток не должно быть выше +30 В или ниже -30 В.

    Eas Single Pulse Avalanche Energy - максимальная энергия единичного импульса на стоке составляет 960 мДж. Пояснение дается на рисунке 12 (Fig 12).

    Iar Avalanche Current - максимальный прерываемый ток составляет 20 А.

    Ear Repetitive Avalanche Energy - максимальная энергия повторяющихся импульсов на стоке не должна превышать 28 мДж (для каждого импульса).

    dv/dt Peak Diode Recovery dv/dt - предельная скорость нарастания напряжения на стоке равна 3,5 В/нс.

    Tj, Tstg Operating Junction and Storage Temperature Range – безопасный температурный диапазон от -55°C до +150°C.

    Soldering Temperature, for 10 seconds - допустимая при пайке максимальная температура составляет 300°C, причем на расстоянии минимум 1,6мм от корпуса.

    Mounting torque, 6-32 or M3 screw - максимальный момент при креплении корпуса не должен превышать 1,1 Нм.

    Rjc Junction-to-Case (кристалл-корпус) 0.45 °C/Вт.

    Rcs Case-to-Sink, Flat, Greased Surface (корпус-радиатор) 0.24 °C/Вт.

    Rja Junction-to-Ambient (кристалл-окружающая среда) зависит от радиатора и внешних условий.

Следующая таблица содержит все необходимые электрические характеристики полевого транзистора при температуре кристалла 25°C (см. рис. 3).

    V(br)dss Drain-to-Source Breakdown Voltage - напряжение сток-исток, при котором наступает пробой равно 500 В.

    ΔV(br)dss/ΔTj Breakdown Voltage Temp.Coefficient - температурный коэффициент, напряжения пробоя, в данном случае 0,59 В/°C.

    Rds(on) Static Drain-to-Source On-Resistance - сопротивление сток-исток открытого канала при температуре 25°C, в данном случае, составляет 0,27 Ом. Оно зависит от температуры, но об этом позже.

    Vgs(th) Gate Threshold Voltage - пороговое напряжение включения транзистора. Если напряжение затвор-исток будет меньше (в данном случае 2 - 4 В), то транзистор будет оставаться закрытым.

    gfs Forward Transconductance - Крутизна передаточной характеристики, равна отношению изменения тока стока к изменению напряжения на затворе. В данном случае измерена при напряжении сток-исток 50 В и при токе стока 20 А. Измеряется в Ампер/Вольт или Сименсах.

    Idss Drain-to-Source Leakage Current - ток утечки стока, он зависит от напряжения сток-исток и от температуры. Измеряется микроамперами.

    Igss Gate-to-Source Forward Leakage и Gate-to-Source Reverse Leakage - ток утечки затвора. Измеряется наноамперами.

    Qg Total Gate Charge - заряд, который нужно сообщить затвору для открытия транзистора.

    Qgs Gate-to-Source Charge - заряд емкости затвор-исток.

    Qgd Gate-to-Drain ("Miller") Charge - соответствующий заряд затвор-сток (емкости Миллера)

В данном случае эти параметры измерены при напряжении сток-исток, равном 400 В и при токе стока 20 А. На рисунке 6 дано пояснение относительно связи величины напряжения затвор-исток и полного заряда затвора Qg Total Gate Charge, а на рисунках 13 a и b приведены схема и график этих измерений.

    td(on) Turn-On Delay Time - время открытия транзистора.

    tr Rise Time - время нарастания импульса открытия (передний фронт).

    td(off) Turn-Off Delay Time - время закрытия транзистора.

    tf Fall Time - время спада импульса (закрытие транзистора, задний фронт).

В данном случае измерения проводились при напряжении питания 250 В, при токе стока 20 А, при сопротивлении в цепи затвора 4,3 Ом, и сопротивлении в цепи стока 20 Ом. Схема и графики приведены на рисунках 10 a и b.

    Ld Internal Drain Inductance - индуктивность стока.

    Ls Internal Source Inductance - индуктивность истока.

Данные параметры зависит от исполнения корпуса транзистора. Они важны при проектировании драйвера, поскольку напрямую связаны с временными параметрами ключа, особенно это актуально при разработке высокочастотных схем.

    Crss Reverse Transfer Capacitance - емкость затвор-сток (емкость Миллера).

Данные измерения проводились на частоте 1 МГц, при напряжении сток-исток 25 В. На рисунке 5 показана зависимость данных параметров от напряжения сток-исток.

Следующая таблица (см. рис. 4) описывает характеристики интегрированного внутреннего диода полевого транзистора, условно находящегося между истоком и стоком.

    Is Continuous Source Current (Body Diode) - максимальный непрерывный длительный ток диода.

    Ism Pulsed Source Current (Body Diode) - максимально допустимый импульсный ток через диод.

    Vsd Diode Forward Voltage - прямое падение напряжения на диоде при 25°C и токе стока 20 А, когда на затворе 0 В.

    trr Reverse Recovery Time - время обратного восстановления диода.

    Qrr Reverse Recovery Charge - заряд восстановления диода.

    ton Forward Turn-On Time - время открытия диода обусловлено главным образом индуктивностями стока и истока.

Приведены пределы тока стока, в зависимости от напряжения сток-исток и напряжения затвор-исток при длительности импульса 20 мкс. Первый рисунок - для температуры 25°C, второй - для 150°C. Очевидно влияние температуры на управляемость открытием канала.

На рисунке 6 графически представлена передаточная характеристика данного полевого транзистора. Очевидно, чем ближе напряжение затвор-исток к 10 В, тем лучше открывается транзистор. Влияние температуры также просматривается здесь довольно отчетливо.

На рисунке 7 приведена зависимость сопротивления открытого канала при токе стока в 20 А от температуры. Очевидно, с ростом температуры увеличивается и сопротивление канала.

На рисунке 9 приведена зависимость прямого падения напряжения на внутреннем диоде от величины тока стока и от температуры. На рисунке 8 показана область безопасной работы транзистора в зависимости от длительности времени открытого состояния, величины тока стока и напряжения сток-исток.

На рисунке 11 показана зависимость максимального тока стока от температуры корпуса.


На рисунках а и b представлены схема измерений и график, показывающий временную диаграмму открытия транзистора в процессе нарастания напряжения на затворе и в процессе разряда емкости затвора до нуля.

На рисунке 14 показана зависимость максимально допустимой энергии импульса от величины прерываемого тока и температуры.

На рисунках а и b показаны график и схема измерений заряда затвора.

На рисунке 16 показана схема измерений параметров и график типичных переходных процессов во внутреннем диоде транзистора.

На последнем рисунке изображен корпус транзистора IRFP460LC, его размеры, расстояние между выводами, их нумерация: 1-затвор, 2-сток, 3-исток.

Так, прочитав даташит, каждый разработчик сможет подобрать подходящий силовой или не очень, полевой или IGBT-транзистор для проектируемого либо ремонтируемого силового преобразователя, будь то , или любой другой силовой импульсный преобразователь.

Зная параметры полевого транзистора, можно грамотно разработать драйвер, настроить контроллер, провести тепловые расчеты, и подобрать подходящий радиатор без необходимости ставить лишнее.

Полевым транзистором называется полупроводниковый прибор, в котором ток создаётся только основными носителями зарядов под действием продольного электрического поля, а управляющее этим током осуществляется поперечным электрическим полем, которое создаётся напряжением, приложенным к управляющему электроду.

Несколько определений:

    Вывод полевого транзистора, от которого истекают основные носители зарядов, называется истоком.

    Вывод полевого транзистора, к которому стекают основные носители зарядов, называется стоком.

    Вывод полевого транзистора, к которому прикладывается управляющее напряжение, создающее поперечное электрическое поле называется затвором.

    Участок полупроводника, по которому движутся основные носители зарядов, между p-n переходом, называется каналом полевого транзистора.

Поэтому полевые транзисторы подразделяются на транзисторы с каналом p-типа или n-типа.

Принцип действия рассмотрим на примере транзистора с каналом n-типа.

1) Uзи = 0; Ic1 = max;

2) |Uзи| > 0; Ic2 < Ic1

3) |Uзи| >> 0; Ic3 = 0

На затвор всегда подаётся такое напряжение, чтобы переходы закрывались. Напряжение между стоком и истоком создаёт продольное электрическое поле, за счёт которого через канал движутся основные носители зарядов, создавая ток стока.

1) При отсутствии напряжения на затворе p-n переходы закрыты собственным внутренним полем, ширина их минимальна, а ширина канала максимальна и ток стока будет максимальным.

2) При увеличении запирающего напряжения на затворе ширина p-n переходов увеличивается, а ширина канала и ток стока уменьшаются.

3) При достаточно больших напряжениях на затворе ширина p-n переходов может увеличиться настолько, что они сольются, ток стока станет равным нулю.

Напряжение на затворе, при котором ток стока равен нулю, называется напряжением отсечки.

Вывод: полевой транзистор представляет собой управляемый полупроводниковый прибор, так как, изменяя напряжение на затворе, можно уменьшать ток стока и поэтому принято говорить, что полевые транзисторы с управляющими p-n переходами работают только в режиме обеднения канала.

    Чем объяснить высокое входное сопротивление полевого транзистора?

Т.к. управление полевым транзистором осуществляется электрическим полем, то в управляющем электроде практически нет тока, за исключением тока утечки. Поэтому полевые транзисторы имеют высокое входное сопротивление, порядка 10 14 Ом.

    От чего зависит ток стока полевого транзистора?

Зависит от подаваемых напряжений U си иU зи.

    Схемы включения полевых транзисторов.

Полевой транзистор можно включать по одной из трех основных схем: с общим истоком (ОИ), общим стоком (ОС) и общим затвором (ОЗ).

На практике чаще всего применяется схема с ОИ, аналогичная схеме на биполярном транзисторе с ОЭ. Каскад с общим истоком даёт очень большое усиление тока и мощности. Схема с ОЗ аналогична схеме с ОБ. Она не даёт усиления тока, и поэтому усиление мощности в ней во много раз меньше, чем в схеме ОИ. Каскад ОЗ обладает низким входным сопротивлением, в связи с чем он имеет ограниченное практическое применение в усилительной технике.

    В чем отличие полевого транзистора от биполярного?

В полевом транзисторе управление током осуществляется электрическим полем, создаваемым приложенным напряжением, а не с помощью тока базы. Поэтому в управляющем электроде практически нет тока, за исключением токов утечки.

    Статический режим включения транзистора. Статические характеристики полевых транзисторов.

К основным характеристикам относятся:

    Стокозатворная характеристика (рис. а) – это зависимость тока стока (Ic) от напряжения на затворе (Uси) для транзисторов с каналом n-типа.

    Стоковая характеристика (рис. б) – это зависимость Ic от Uси при постоянном напряжении на затворе Ic = f (Uси) при Uзи = Const.

Основные параметры:

    Напряжение отсечки.

    Крутизна стокозатворной характеристики. Она показывает, на сколько миллиампер изменится ток стока при изменении напряжения на затворе на 1 В.

    Внутреннее сопротивление (или выходное) полевого транзистора

    Входное сопротивление

    Поясните влияние на ток стока напряжений U зи и U си .

Влияние подводимых напряжений в транзисторе в управляемом иллюстрируется на рисунке:


Три основных рабочих режима транзистора.

В различных видах полевых транзисторов и при различных внешних напряжениях затвор может оказывать два вида воздействий на канал: в первом случае (например, в полевых транзисторах с управляющим p-n-переходом при напряжениях на электродах, соответствующих рис. 2-1.5) он препятствует протеканию тока через канал, уменьшая число носителей зарядов, проходящих через него (такой режим называют режимом обеднения канала ), во втором случае (например, в МДП-транзисторах с индуцированным каналом, включенных в соответствии с рис. 2-1.7) затвор, наоборот, стимулирует протекание тока через канал, увеличивая число носителей зарядов в потоке (режим обогащения канала ). Часто просто говорят орежиме обеднения ирежиме обогащения . Заметим, что МДП-транзисторы с индуцированным каналом могут находиться в активном режиме только в случае режима обогащения канала, а для МДП-транзисторов со встроенным каналом это может быть и режим обогащения, и режим обеднения. В полевых транзисторах с управляющим p-n-переходом попытка приложить прямое смещение на этот переход вызывает его открытие и протекание существенного тока в цепи затвора. Реальные процессы в транзисторе в этом случае сильно зависят от его конструкции, практически никогда не документируются и трудно предсказуемы. Поэтому говорить о режиме обогащения для полевых транзисторов с управляющим переходом не принято да и просто бессмысленно.

Режим насыщения - характеризует состояние не всего транзистора в целом, как это было для биполярных приборов, а только токопроводящего канала между истоком и стоком. Данный режим соответствует насыщению канала основными носителями зарядов. Такое явление какнасыщение является одним из важнейших физических свойств полупроводников. Оказывается, что при приложении внешнего напряжения к полупроводниковому каналу, ток в нем линейно зависит от этого напряжения лишь до определенного предела (напряжение насыщения ), а по достижении этого предела стабилизируется и остается практически неизменным вплоть до пробоя структуры. В приложении к полевым транзисторам это означает, что при превышении напряжением сток-исток некоторого порогового уровня оно перестает влиять на ток в цепи. Если для биполярных транзисторов режим насыщения означал полную потерю усилительных свойств, то для полевых это не так. Здесь наоборот, насыщение канала приводит к повышению коэффициента усиления и уменьшению нелинейных искажений. До достижения напряжением сток-исток уровня насыщения ток через канал линейно увеличивается с ростом напряжения (т.е. ведет себя так же, как и в обычном резисторе). Автору неизвестно какого-либо устоявшегося названия для такого состояния полевого транзистора (когда ток через канал идет, но канал ненасыщен), будем называть егорежимом ненасыщенного канала (он находит применение в аналоговых ключах на полевых транзисторах). Режим насыщения канала обычно является нормальным при включении полевого транзистора в усилительные цепи, поэтому в дальнейшем при рассмотрении работы транзисторов в схемах мы не будем делать особого акцента на этом, подразумевая, что между стоком и истоком транзистора присутствует напряжение, достаточное для насыщения канала.

    Чем характеризуется ключевой режим работы транзистора?

Ключевым называют такой режим работы транзистора, при котором он может быть либо полностью открыт, либо полностью закрыт, а промежуточное состояние, при котором компонент частично открыт, в идеале отсутствует. Мощность, которая выделяется в транзисторе, в статическом режиме равна произведению тока, протекающего через выводы сток-исток, и напряжения, приложенного между этими выводами.

В идеальном случае, когда транзистор открыт, т.е. в режиме насыщения, его сопротивление межу выводами сток-исток стремится к нулю. Мощность потерь в открытом состоянии представляет произведение равного нулю напряжения на определённую величину тока. Таким образом, рассеиваемая мощность равна нулю.

В идеале, когда транзистор закрыт, т.е. в режиме отсечки, его сопротивление между выводами сток-исток стремится к бесконечности. Мощность потерь в закрытом состоянии есть произведение определённой величины напряжения на равное нулю значение тока. Следовательно, мощность потерь равна нулю.

Выходит, что в ключевом режиме, в идеальном случае, мощность потерь транзистора равна нулю.

    Что называют усилительным каскадом?

Соединение нескольких усилителей, предназначенное для увеличения параметров электрического сигнала. Подразделяют на каскады предварительного усиления и выходные каскады. Первые предназначены для повышения уровня сигнала по напряжению, а выходные каскады – для получения требуемых тока или мощности сигнала.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!