Компьютер. Радиоэлектроника. Блоки питания. Справочники. Источники питания. Радиосвязь

Напряжение насыщения полевого транзистора. Полевые транзисторы с изолированным затвором

Это полупроводниковые приборы, которые ста­новятся все более популярными в современной электронике. Их рабо­та основана на использовании полупроводникового токонесущего канала, сопротивление которого управляется электрическим полем.Тем самым обеспечивается управление величиной тока, протекающего по каналу.

Полевые транзисторы называют также униполярными транзисторами, поскольку перенос заряда в них осуществляется только основными носителями. Ток этих носителей протекает в полупроводнике только одного типа - или n -типа, или p -типа. В отличие от полевого работа обычного транзистора основана на переносе как неосновных, так и основных носи­телей заряда. Это связано с тем, что ток в них протекает через прямосмещенный переход база-эмиттер (основные носители) и обратносмещенный переход база-коллектор (неосновные носители). Поэтому обычные транзисторы называют биполярными транзисторами.

У полевого транзистора три электрода: исток s (source ), затвор g (gate ) и сток d (drain ). Эти электроды соответствуют эмиттеру, базе и коллектору биполярного транзистора.

Полевые транзисторы малы по размерам и имеют очень высокое входное сопротивление.Они менее чувствительны к изменениям температуры по сравнению с биполярными транзисторами и поэтому менее склонны к тепловому пробою. Следует также отметить простоту разработки схем на основе полевых транзисторов, в которых используется меньше компонентов, чем в аналогичных схемах на биполярных транзисторах.

Полевые транзисторы просты в изготовлении и лучше подходят для использования в интегральных схемах, чем их собратья - биполярные транзисторы.

Существуют два типа полевых транзисторов: транзисторы с управляющим pn -переходом и транзисторы со структурой металл-оксид-полупроводник (МОП-транзистор).

Транзистор с управляющим pn-переходом

Рассмотрим канал из полупроводника n -типа (канал n -типа), к которо­му приложено постоянное напряжение V DD (рис. 26.1(а)). По каналу от тока к истоку будет протекать ток, называемый током стока I d . Если теперь внутри п -канала путем диффузии создать область р -типа, называемую затвором (рис. 26.1(б)), то образуется рп -переход. Точно так же, как в случае обычного рп -перехода, в области перехода формируется слой, обедненный основными носителями заряда. Видно, что обедненный слой ограничивает протекание тока по каналу, уменьшая эффективную шири­ну последнего. Другими словами, он увеличивает сопротивление канала. Ширину обедненного слоя можно увеличить, т. е. еще больше ограничить протекание тока, если подать на переход напряжение V GS , которое сме­стит переход в обратном направлении (рис. 26.1(б)). Изменяя величину напряжения обратного смещения на затворе, можно управлять величи­ной тока стока I D . На рис. 26.2 показано поперечное сечение структуры полевого транзистора рассматриваемого типа.


Рис. 26.1. Принцип работы полевого транзистора с управляющим рп -переходом.




Поперечное сечение структуры

полевого транзистора с управляющим рп -переходом.

Рис. 26.3. Условные обозначения транзисторов

с управляющим рп- переходом.


Применяются также полевые транзисторы с каналом p -типа, питае­мые от источника отрицательного напряжения – V DD . Условные обозна­чения обоих типов транзисторов с управляющим pn -переходом приведены на рис. 26.3.

Выходные характеристики

рп- переходом в схеме с общим истоком показано на рис. 26.4. Они ана­логичны выходным характеристикам биполярного транзистора. Эти ха­рактеристики показывают зависимость выходного тока I D от выходного напряжения V DS (напряжения между стоком и истоком) для заданных Значений напряжения на затворе V GS (напряжения между затвором и истоком).

Диапазон изменения смещающего напряжения затвор-исток доволь­но велик (несколько вольт) в отличие от биполярного транзистора, где напряжение база-эмиттер практически постоянно.

Видно, что при увеличении (по абсолютной величине) напряжения на затворе ток стока уменьшается. Это уменьшение происходит до тех пор, пока расширяющийся обедненный слой перехода затвор-канал не пере­кроет весь канал, останавливая протекание тока. В этом случае говорят, что полевой транзистор находится в состоянии отсечки.

Напряжение отсечки

рассмотрим выходную характеристику для V GS = 0 (рис. 26.4). При уве­личении напряжения V DS (от нулевого значения) ток стока постепенно увеличивается, пока не достигает точки Р, после которой величина тока практически не изменяется. Напряжение в точке Р называется напря­жением отсечки. При этом напряжении обедненный слой, связанный с обратносмещенным переходом затвор-канал, почти полностью перекры­вает канал. Однако протекание тока I D в этой точке не прекращается, поскольку благодаря этому току как раз и создается обедненный слой. Все кривые семейства выходных характеристик имеют свои точки отсеч­ки: P 1 , P 2 и т. д. Если соединить эти точки друг с другом линией, то правее ее лежит область отсечки, являющаяся рабочей областью полевого транзистора.

Усилитель на полевом транзисторе с общим истоком

Схема типичного усилителя ЗЧ на полевом транзисторе показана на рис. 26.5. В этой схеме через резистор утечки R 1 отводится на шасси очень малый ток утечки затвора. Резистор R 3 обеспечивает необходимое обратное смещение, поднимая потенциал истока выше потенциала затво­ра.




Рис. 26.4. Семейство выходных характеристик транзистора с управляющим рп -переходом.



Рис. 26.5. УЗЧ на п -канальном полевом транзисторе с управляющим рп- переходом.

Кроме того, этот резистор обеспечивает также стабильность режима усилителя по постоянному току. R 2 – нагрузочный резистор, который может иметь очень большое сопротивление (до 1,5 МОм). Развязыва­ющий конденсатор С 2 в цепи истока устраняет отрицательную обратную связь по переменному току через резистор R 3 . Следует отметить, что раз­делительный конденсатор С 1 может иметь небольшую емкость (0,1 мкФ) благодаря высокому входному сопротивлению полевого транзистора.

При подаче сигнала на вход усилителя изменяется ток стока, вызы­вая, в свою очередь, изменение выходного напряжения на стоке транзи­стора. Во время положительного полупериода входного сигнала напря­жение на затворе увеличивается в положительном направлении, обратное напряжение смещения перехода затвор-исток уменьшается и, следовательно, увеличивается ток I D полевого транзистора. Увеличение I D приводит к уменьшению выходного (стокового) напряжения, и на выходе воспроизводится отрицательный полупериод усиленного сигнала. И на­оборот, отрицательному полупериоду входного сигнала соответствует по­ложительный полупериод выходного сигнала. Таким образом, входной и выходной сигналы усилителя с общим истоком находятся в противофазе.

Расчет статического режима

Одно из преимуществ полевого транзистора – очень малый ток утечки затвора, величина которого не превышает нескольких пикоампер (10 -12 A). Поэтому в схеме усилителя па рис. 26.5 затвор находится практически при нулевом потенциале. Ток полевого транзистора протекает от стока к истоку и обычно отождествляется с током стока I D (который, очевидно, равен току истока I S ).

Рассмотрим схему на рис. 26.5. Полагая I D = 0,2 мА, вычисляем потенциал истока: V S = 0,2 мА · 5 кОм = 1 В. Это величина напряжения обратного смещения управляющего pn -перехода.

Падение напряжения на резисторе R 2 = 0,2 мА · 30 кОм = 6 В.

Потенциал стока V D = 15 – 6 = 9 В.

Линия нагрузки

Линию нагрузки можно начертить точно так же, как для биполярного транзистора. На рис. 26.6 показана линия нагрузки для схемы па же. 26.5.

Если I D = 0, то V DS = V DD = 15 В. Это точка Х на линии нагрузки.

Если V DS = 0, то почти все напряжение V DD источника питания па­дает на резисторе R 2 . Следовательно, I D = V DD / R 2 = 15 В / 30 кОм = 0,5 мА. Это точка Y на линии нагрузки. Рабочая точка Q выбирается таким образом, чтобы транзистор работал в области отсечки.

Выбранная рабочая точка Q (точка покоя) на рис. 26.6 определяется величинами: I D = 0,2 мА, V GS = - 1 В, V DS = 9 В.

МОП-транзистор

В полевом транзисторе этого типа роль затвора играет металлический электрод, электрически изолированный от полупроводника тонкой пленкой диэлектрика, в данном случае оксида. Отсюда и название транзистора «МОП» - сокращение от «металл-оксид-полупроводник».

Канал п -типа в МОП-транзисторе формируется за счет притяже­ния электронов из подложки р -типа диэлектрическим слоем затвора (рис. 26.7). Ширину канала можно изменять, подавая на затвор электрический потенциал. Подача положительного (относительно подложки)



Рис. 26.6. Линия нагрузки усилителя на полевом транзисторе (рис. 26.5).



Рис. 26.7.

потенциала приводит к расширению канала п -типа и увеличению тока через этот канал, подача отрицательного потенциала вызывает сужение канала и уменьшение тока. Для МОП-транзистора с каналом р -типа си­туация изменяется на обратную.

Существует два типа МОП-транзисторов: транзисторы, работающие в режиме обогащения , и транзисторы, работающие в режиме обедне­ния. Транзистор, работающий в режиме обогащения, находится в состоянии отсечки тока (нормально выключен), когда напряжение смеще­ния V GS = 0.



Рис. 26.8. п -типа, ра­ботающего в режиме обогащения, и условное обозначение этого транзистора.



Рис. 26.9. Выходные характеристики МОП-транзистора с каналом n -типа, ра­ботающего в режиме обеднения, и условное обозначение этого транзистора.

Протекание тока начинается только при подаче напряже­ния смещения на затвор. Выходные характеристики п -канального МОП-транзистора с каналом п -типа, работающего в режиме обогащения, и его условное обозначение показаны на рис. 26.8.

МОП-транзистор, работающий в режиме обеднения, проводит ток, ко­гда напряжение смещения на затворе отсутствует (нормально включен). Для МОП-транзистора с каналом n -типа ток стока увеличивается при подаче на затвор положительного напряжения и уменьшается при подаче отрицательного напряжения (рис. 26.9).

р -типа показано на рис. 26.10. Заметим, что прерывающаяся жирная линия указывает на МОП-транзистор, работающий в режиме обогащения (нормально выключен).




Рис. 26.10. Условное обозначение МОП-транзистора с каналом р -типа.




Рис. 26.11. Усилитель на МОП-транзисторе с каналом р -типа, рабо­тающий в режиме обеднения.


Сплошная линия используется для обозначения МОП-транзистора, работающего в режиме обеднения (нормально включен). Вывод подлож­ки обозначается буквой «Ь», обычно он соединяется с выводом истока. На рис. 26.11 схема типичного усилителя с общим истоком на МОП-транзисторе с каналом р -типа, работающего в режиме обеднения. Ис­пользуется источник питания с отрицательным напряжением. Положи­тельное напряжение смещения между затвором и истоком V GS создается обычным образом с помощью резистора R 3 в цепи истока.

В этом видео рассказывается о типах полевых транзисторов:

Анализируя возможность использования полевых транзисторов для усиления электрических сигналов мы ограничивались только одним частным случаем подачи на электроды транзистора определенных напряжений и не рассматривали некоторые достаточно важные физические процессы в полупроводниках. Но помимо уже описанной ситуации возможны и другие, приводящие, например, к протеканию в канале тока не от истока к стоку, а наоборот - от стока к истоку и т.п.

В общем случае для полевого транзистора, так же как и для биполярного, возможны различные устойчивые состояния (режимы работы). Они отличаются друг от друга тем, в каком состоянии находится канал, соединяющий исток и сток транзистора, а также направлением тока, протекающего в канале. В полевых транзисторах дополнительно принято классифицировать также режим воздействия затвора на канал (стимулирует или подавляет протекание тока в нем).

Ниже при описании режимов работы полевых транзисторов мы применим ту же терминологию, какая используется для биполярных транзисторов. Однако следует понимать, что в полевых транзисторах физические процессы протекают иначе и зачастую нельзя однозначно утверждать, что транзистор находится в таком-то режиме без некоторых уточнений. Например, в нашей транскрипции активный режим и режим насыщения могут существовать одновременно независимо друг от друга.

Активный режим - соответствует случаям, рассмотренным при анализе усилительных свойств полевых транзисторов. Именно в активном режиме транзистор наилучшим образом проявляет свои усилительные свойства. Часто такой режим называюют основным , усилительным или нормальным (на усилительные свойства полевого транзистора также оказывает влияние состояние канала, а именно находится ли он в режиме насыщения - см. ниже). При рассмотрении полевых транзисторов мы практически всегда (за исключением ключевых схем) имеем дело с активным режимом, но здесь имеется одна тонкость, о которой также часто говорят как о режиме работы транзистора (или как о режиме работы затвора ). В различных видах полевых транзисторов и при различных внешних напряжениях затвор может оказывать два вида воздействий на канал: в первом случае (например, в полевых транзисторах с управляющим \(p\)-\(n\)-переходом при напряжениях на электродах, соответствующих рис. 2-1.5) он препятствует протеканию тока через канал, уменьшая число носителей зарядов, проходящих через него (такой режим называют режимом обеднения канала ), во втором случае (например, в МДП-транзисторах с индуцированным каналом, включенных в соответствии с рис. 2-1.7) затвор, наоборот, стимулирует протекание тока через канал, увеличивая число носителей зарядов в потоке (режим обогащения канала ). Часто просто говорят о режиме обеднения и режиме обогащения . Заметим, что МДП-транзисторы с индуцированным каналом могут находиться в активном режиме только в случае режима обогащения канала, а для МДП-транзисторов со встроенным каналом это может быть и режим обогащения, и режим обеднения. В полевых транзисторах с управляющим \(p\)-\(n\)-переходом попытка приложить прямое смещение на этот переход вызывает его открытие и протекание существенного тока в цепи затвора. Реальные процессы в транзисторе в этом случае сильно зависят от его конструкции, практически никогда не документируются и трудно предсказуемы. Поэтому говорить о режиме обогащения для полевых транзисторов с управляющим переходом не принято да и просто бессмысленно.

Инверсный режим - по процессам в канале противоположен активному режиму, т.е. поток носителей зарядов в канале протекает не от истока к стоку, а наоборот - от стока к истоку. Для инверсного режима требуется только изменение полярности напряжения на канале, полярность напряжения на затворе остается неизменной. В таком режиме транзистор также может использоваться для усиления. Обычно из-за конструктивных различий между областями стока и истока усилительные свойства транзистора в инверсном режиме проявляются хуже, чем в режиме активном. Впрочем, в некоторых видах МДП-транзисторов конструктивная ассиметрия минимальна, что приводит к симметричности выходных статических характеристик такого транзистора относительно изменения полярности напряжения сток-исток. Данный режим практически никогда не используется в усилительных схемах, но для аналоговых переключателей на полевых транзисторах он оказывается полезен. Однако здесь есть одна ловушка, в которую довольно легко попасть начинающему. Дело в том, что в большинстве МДП-транзисторов (особенно в мощных) производители соединяют подложку с истоком внутри корпуса прибора, что фактически означает, что в этих транзисторах между истоком и стоком имеется диод который не позволяет подавать на переход исток-сток инверсное напряжение, превышающее прямое падение напряжения на этом диоде, т.е. инверсный режим в таком транзисторе попросту невозможен. Вообще, в случае полевых транзисторов о режиме работы вспоминают гораздо реже, чем для биполярных. Дело здесь в том, что каждый конкретный тип полевого транзистора имеет конструкцию строго ориентированную на выполнение какой-то конкретной функции (усиление слабых сигналов, ключ и т.п.), все документируемые параметры транзистора в этом случае характеризуют его работу именно в основном режиме при выполнении предназначенной функции. Поэтому имеет смысл говорить просто о нормальном режиме работы , когда все соответствует документации, или о ненормальном , который в документации просто не предусмотрен (да и вряд ли кому-то понадобиться использовать его в схемах).

Режим насыщения - характеризует состояние не всего транзистора в целом, как это было для биполярных приборов, а только токопроводящего канала между истоком и стоком. Данный режим соответствует насыщению канала основными носителями зарядов. Такое явление как насыщение является одним из важнейших физических свойств полупроводников. Оказывается, что при приложении внешнего напряжения к полупроводниковому каналу, ток в нем линейно зависит от этого напряжения лишь до определенного предела (напряжение насыщения ), а по достижении этого предела стабилизируется и остается практически неизменным вплоть до пробоя структуры. В приложении к полевым транзисторам это означает, что при превышении напряжением сток-исток некоторого порогового уровня оно перестает влиять на ток в цепи. Если для биполярных транзисторов режим насыщения означал полную потерю усилительных свойств, то для полевых это не так. Здесь наоборот, насыщение канала приводит к повышению коэффициента усиления и уменьшению нелинейных искажений. До достижения напряжением сток-исток уровня насыщения ток через канал линейно увеличивается с ростом напряжения (т.е. ведет себя так же, как и в обычном резисторе). Автору неизвестно какого-либо устоявшегося названия для такого состояния полевого транзистора (когда ток через канал идет, но канал ненасыщен), будем называть его режимом ненасыщенного канала (он находит применение в аналоговых ключах на полевых транзисторах). Режим насыщения канала обычно является нормальным при включении полевого транзистора в усилительные цепи, поэтому в дальнейшем при рассмотрении работы транзисторов в схемах мы не будем делать особого акцента на этом, подразумевая, что между стоком и истоком транзистора присутствует напряжение, достаточное для насыщения канала.

Режим отсечки - режим, в котором ток через канал полевого транзистора не протекает. Переход полевого транзистора в режим отсечки происходит по достижении напряжением на затворе определенного порога (напряжение отсечки ). В полевых транзисторах с управляющим \(p\)-\(n\)-переходом это имеет место при постепенном увеличении обратного смещения на перереходе, а в МДП-транзисторах со встроенным каналом при увеличении разности потенциалов между истоком и затвором при условии работы в режиме обеднения канала. В МДП-транзисторах с индуцированным каналом режим отсечки имеет место при нулевой разности напряжений между истоком и затвором, а по достижении напряжения отсечки (или порогового напряжения ) канал открывается. Поскольку выходной ток транзистора в режиме отсечки практически равен нулю, он используется в ключевых схемах и соответвует размыканию транзисторного ключа.

Помимо режима работы для эксплуатации полевых транзисторов имеет значение то, каким образом транзистор включен в каскад усиления (как поданы питающие напряжения на его электроды, в какие цепи включены нагрузка и источник сигнала). Так же как и для биполярных транзисторов, здесь различают три основных способа (рис. 2-1.8): схема с общим истоком (ОИ), схема с общим стоком (ОС) и схема с общим затвором (ОЗ).

Рис. 2-1.8. Схемы включения полевых транзисторов (направления токов соответствуют активному режиму работы)

Для полевых транзисторов полностью сохраняется понятие класса усиления в том же виде, в каком оно описано в подразделе Классы усиления для биполярных транзисторов. Отличие лишь в том, что критерием нахождения транзистора в режиме усиления здесь служит наличие потока зарядов через канал от истока к стоку.

Полевой транзистор. Определение. Обозначение. Классификация (10+)

Полевой транзистор

Полевой транзистор (FET) - электронный прибор, который позволяет регулировать ток, изменяя управляющее напряжение. Как я уже писал ранее, для проектирования электронных схем нет никакой необходимости иметь представление о физических принципах работы и устройстве электронного прибора. Достаточно знать, что это - черный ящик, обладающий определенными характеристиками. Ничего не изменится, если вдруг изобретут новую технологию, позволяющую делать приборы, по характеристикам похожие на полевые транзисторы, но основанные на других принципах. Мы будем их ставить в те же схемы и называть полевиками.

Определение полевого транзистора

Полевой транзистор - это прибор, обладающий четырьмя выводами: Исток, Сток, Затвор, Подложка. Управляющее напряжение прилагается между Затвором и Истоком. В большинстве случаев подложка внутри корпуса соединена с истоком, так что наружу торчат три вывода. Некоторые виды полевых транзисторов не имеют подложки (транзисторы с p-n переходом).

Полевой транзистор имеет два режима работы: Линейный участок и участок насыщения.

Линейный участок: [Ток стока, А ] = 2 * k * (([Управляющее напряжение, В ] - [Пороговое напряжение, В ]) * [Напряжение сток - исток, В ] - 0.5 [Напряжение сток - исток, В ] ^ 2)

Участок насыщения: [Ток стока, А ] = k * ([Управляющее напряжение, В ] - [Пороговое напряжение, В ]) ^ 2

Пороговое напряжение (напряжение отсечки) - это некоторая абстрактная величина, для которой верно уравнение линейного участка. Можно считать, что это напряжение, при котором продолженная прямая линия линейного участка достигает нулевого тока. Обратите внимание, что это именно абстракция. Очень распространенной ошибкой является мнение, что при управляющем напряжении, меньше порогового, проводимость отсутствует. Это не так. Гарантировать отсутствие проводимости можно только, если напряжение меньше намного (несколько вольт). Если же оно вблизи порогового, то небольшая проводимость присутствует, но вывести разумную формулу для ее расчета возможным (да и полезным) не представляется.

Подложка образует p-n переход с полупроводниковым каналом, соединяющим сток и исток, так что напряжение на подложке не должно быть меньше (для канала типа n) / больше (для канала типа p) напряжения на истоке.

Сопротивление между затвором и истоком полевого транзистора в рабочем режиме очень высокое.

Электронный прибор с четырьмя или тремя выводами, обладающий свойствами, описанными этими формулами, мы будем называть Полевым транзистором

Обозначение и классификация (виды, типы) полевых транзисторов

Полевые транзисторы бывают с изолированным затвором (MOSFET, МОП) (первая буква индекса на картинке "A") и с p-n переходом (первая буква индекса на картинке "B"). Прибор с изолированным затвором может работать при любой полярности напряжения на затворе, так как затвор изолирован от канала. Прибор с p-n переходом работает, только если p-n переход не проводит электрический ток, то есть прямое напряжение не может превышать нескольких десятых вольта.

Полевые транзисторы бывают с каналом n - типа (вторая буква индекса на картинке "A") и p - типа (вторая буква индекса на картинке "B"). n - канальные транзисторы работают, когда напряжение на истоке меньше напряжения на стоке, p - канальные, наоборот, когда напряжение на истоке больше напряжения на стоке. На затвор n - канального полевого транзистора с p-n переходом нужно подавать отрицательное напряжение относительно истока, на затвор p - канального - положительное.

5.1 Теоретические сведения

5.1.1 Типы полевых транзисторов, принцип действия, область применения

Полевые транзисторы представляют собой полупроводниковые приборы, в которых используется движение основных носителей заряда под воздействием продольного электрического поля через канал , электропроводностью которого можно управлять с помощью поперечного электрического поля. Область, из которой носители заряда выходят (истекают) в канал, называется истоком , а область, в которую они входят (стекают) – стоком . Напряжение, изменяющее электропроводность канала, прикладывается между управляющим электродом - затвором и истоком.

Структуры полевых транзисторов очень разнообразны. В большинстве из них канал представляет собой слаболегированный тонкий слой, расположенный либо непосредственно у поверхности полупроводникового кристалла, либо на некотором расстоянии от поверхности параллельно ей. Таким образом носители движутся вдоль поверхности. Исток и сток обычно сильнолегированные области.

Существуют три типа полевых транзисторов, различающихся физической структурой и способом управления проводимостью канала. В полевых транзисторах с изолированным затвором между металлическим затвором и каналом расположен слой диэлектрика так, что образуется структура металл – диэлектрик – полупроводник (МДП). По этой причине такие транзисторы называют также МДП-транзисторами . Поперечное электрическое поле, проникая через тонкий слой диэлектрика, управляет концентрацией носителей заряда в канале. В зависимости от способа изменения типа электропроводности на поверхности кристалла различают МДП-транзисторы с индуцированным и встроенным каналами. В транзисторах, изготовленных на основе кремния, в качестве диэлектрика обычно используется диоксид кремния SiO 2 , поэтому их обычно называют МОП-транзисторами .

В полевых транзисторах с управляющим переходом металл – полупроводник металлический электрод затвора образует с приповерхностным слоем канала выпрямляющий контакт, на который в рабочем режиме подается обратное напряжение. Оно изменяет толщину обедненного слоя контакта и тем самым управляет толщиной проводящей части канала, количеством носителей заряда в канале и током через него. В полевых транзисторах с управляющим p-n переходом в качестве затвора используется область противоположного типа проводимости по отношению к каналу, образующая с ним p-n переход, который в рабочем режиме имеет обратное включение. Напряжение на затворе изменяет толщину обедненного слоя управляющего p-n перехода и тем самым толщину проводящей части канала, число носителей заряда в нем и, следовательно, ток в канале.

Полевые транзисторы различают также по типу проводимости канала: с каналом p - или n -типа.

Характерным для всех полевых транзисторов является очень малый ток в цепи затвора, так как затвор либо изолирован, либо образует с каналом управляющий переход, включаемый в обратном направлении. Так как затвор в электрических схемах обычно является входным электродом, то полевой транзистор обладает высоким входным сопротивлением на постоянном токе (более 10 8 ÷ 10 10 Ом). В этом заключается важнейшее отличие полевых транзисторов от биполярных: во входной цепи последних (обычно базовой) протекает значительный ток при прямом напряжении на переходе эмиттер-база. Поэтому входное сопротивление биполярных транзисторов весьма мало (десятки – сотни Ом в схемах с общей базой и общим эмиттером).

В связи с указанным различием входных сопротивлений иногда говорят, что полевой транзистор – это прибор, управляемый напряжением (электрическим полем), а биполярный – прибор, управляемый током. В приборах, управляемых напряжением, напряжение на входном электроде прибора из-за высокого входного сопротивления R вх практически не зависит от параметров самого прибора и определяется ЭДС генератора входного сигнала, если R вх >> R ген , где R ген – внутреннее сопротивление генератора. В приборах, управляемых током, входной ток из-за малого входного сопротивления прибора слабо зависит от параметров прибора и определяется током генератора входного сигнала (при R вх << R ген ).

В настоящее время наибольшее применение находят транзисторы с изолированным затвором, прежде всего благодаря внедрению микроэлектроники. МОП-транзисторы широко используются в кремниевых сверхбольших интегральных схемах (СБИС): микропроцессорах, микроЭВМ, запоминающих устройствах большой информационной емкости, устройствах медицинской электроники и др. Мощные МОП-транзисторы применяются в переключающих схемах.

Транзисторы с управляющим переходом металл – полупроводник на арсениде галлия используются для создания сверхскоростных цифровых интегральных микросхем и в СВЧ-устройствах. Транзисторы с управляющим p-n переходом на кремнии используются в основном как низкочастотные дискретные приборы.

5.1.2 Полевой транзистор с управляющим p-n -переходом

5.1.2.1 Устройство и принцип действия

Полевые транзисторы с управляющим p-n -переходом могут быть изготовлены на основе кристалла полупроводника n - или p -типа.

Упрощенная структура кристалла полевого транзистора с управляющим p-n - переходом, изготовленного на основе полупроводника n-типа, показана на рисунке 5.1. Транзистор состоит из области n-типа и двух областей p -типа. Области p -типа электрически соединяются вместе и образуют затвор.

Рисунок 5.1 – структура полевого транзистора с управляющим p-n-переходом

На границах раздела полупроводников n- и p- типа образуются обедненные слои (или области пространственного заряда (ОПЗ), поскольку в них присутствует нескомпенсированный заряд ионов примесей), обладающие высоким сопротивлением. Канал представляет собой часть полупроводниковой области n -типа, заключенную между p-n -переходами. Если к каналу подсоединить внешний источник постоянного напряжения, в канале создается продольное электрическое поле, под действием которого электроны в канале перемещаются в сторону положительного полюса источника.

Движение основных носителей заряда в канале за счет напряжения на стоке относительно истока U СИ обусловливает прохождение тока в канале и в цепи стока I С .

На затвор относительно истока подается напряжение U ЗИ , смещающее p-n переходы затвор – канал в обратном направлении. При увеличении напряжения источника U ЗИ обратное напряжение на p-n -переходах увеличивается, запирающие слои расширяются, уменьшая сечение канала. При этом электропроводность канала и проходящий через него ток уменьшаются. Таким образом, изменяя напряжение на затворе, можно управлять током, проходящим через канал полевого транзистора. При некотором напряжении на затворе может произойти смыкание областей объемного заряда, т. е. канал перекрывается. Напряжение на затворе (при U ЗИ = 0), при котором канал перекрывается, называется напряжением отсечки и обозначается U ЗИ отс .

эффективное управление сечением канала происходит в том случае, если запирающий слой p-n перехода располагается в основном в полупроводнике n -типа. Это достигается выбором концентрации доноров и акцепторов таким образом, чтобы выполнялось условие N А >> N Д . На высокую концентрацию акцепторов указывает знак «+» в обозначении p-области (p + ).

Когда U СИ не равно 0, в канале протекает ток стока I С . Если выбрать сечение канала на расстоянии x от истока, то падение напряжения на этом участке U(x ) будет пропорционально сопротивлению участка канала и току I С . В сечении x напряжение на управляющем p-n -переходе складывается из напряжений U ЗИ и U(x ) .

Напряжение U(x ) при изменении x от 0 до l (l – длина канала) изменяется от 0 до U СИ . По этой причине ширина запирающего слоя увеличивается, а сечение канала уменьшается при приближении к стоку (рисунок 5.1).

Таким образом, ширина канала, определяющая его сопротивление, и ток стока I С зависят от напряжений U ЗИ и U СИ . если начиная c некоторой точки x сумма напряжений U ЗИ и U(x ) будет равна, а затем превысит напряжение U ЗИ отс , произойдет перекрытие канала. В действительности полного перекрытия канала путем увеличения напряжения U СИ получить нельзя, поскольку само перекрытие является следствием прохождения тока стока. В результате автоматически устанавливается некоторая малая ширина канала.

На рисунке 5.2 показано условное графические обозначения полевого транзистора с управляющим p-n -переходом и схема включения с общим истоком.

а) б) в)

Рисунок 5.2 –Условные графические обозначения полевого транзистора с управляющим p-n- переходом (а – с каналом n -типа, б – с каналом p -типа) и схема включения с общим истоком (в)

5.1.2.2 Статические характеристики полевого транзистора с управляющим p-n -переходом

Статические выходные (стоковые) характеристики. Семейство стоковых характеристик полевого транзистора, выражающих зависимость I С = f (U СИ) при U ЗИ = const, изображено на рисунке 5.3. Рассмотрим стоковую характеристику, снятую при U ЗИ = 0.

Если бы сопротивление канала не зависело от проходящего через него тока стока I С , ток I С был бы связан с напряжением U СИ линейной зависимостью. Но ток I С создает на сопротивлении канала падение напряжения U(x ) , увеличивающее области объемного заряда переходов. Вследствие этого увеличение напряжения U СИ сопровождается уменьшением площади сечения канала и увеличением его сопротивления, что приводит к замедлению роста тока I С . При некотором напряжении на стоке, обозначаемом U СИ нас и называемом напряжением насыщения канал в области стока перекрывается. это происходит при |U СИ нас | = |U ЗИ от с |. Ток стока, при котором перекрывается канал, называют начальным и обозначают I С нач . Если к затвору полевого транзистора приложить напряжение U ЗИ , смещающее p-n -переход в обратном направлении, то перекрытие канала наступит при меньшем значении напряжения U СИ . Это объясняется тем, что к p-n переходу между затвором и стоком прикладывается обратное напряжение, равное |U ЗИ | + |U СИ |. Смыкание переходов произойдет при условии равенства этого суммарного напряжения напряжению отсечки:

|U " СИ нас | + |U " ЗИ | = |U ЗИ отс | = |U СИ нас |. (1)

Учитывая, что в полевых транзисторах с каналом n- типа U СИ > 0, а U ЗИ < 0 и U ЗИ отс < 0, из уравнения (1) получаем

|U " СИ нас | = |U СИ нас | – |U " ЗИ |. (2)

I C нач - - - - - - - -

Рисунок 5.3 – Семейство выходных (стоковых) характеристик полевого транзистора с управляющим p-n -переходом

Область стоковых характеристик, соответствующая напряжениям 0 < U СИ < U СИ нас , называется крутой или омической . Последнее название связано с тем, что дифференциальное сопротивление канала полевого транзистора в данной области определяется напряжением на затворе. Вследствие этого полевые транзисторы широко используются в качестве переменных резисторов, управляемых электрическим способом.

Участки стоковых характеристик, снятые при U СИ > U СИ нас , соответствуют перекрытию канала (или насыщению). При напряжении U СИ , большем напряжения перекрытия, увеличиваются длина перекрытой части канала и его сопротивление. Если бы длина перекрытой части канала линейно зависела от напряжения U СИ, то с его ростом пропорционально увеличивалось бы сопротивление канала, а проходящий через него ток стока оставался постоянным. На самом деле длина перекрытой части канала зависит от напряжения U СИ так же, как глубина проникновения области объемного заряда δ в канал, определяемая формулой

Согласно уравнению (3), длина перекрытой части канала и его сопротивление пропорциональны и увеличиваются с ростом напряжения U СИ более медленно. Поэтому в области перекрытия канала увеличение напряжения U СИ сопровождается небольшим возрастанием тока стока.

Стоковые характеристики полевого транзистора с управляющим p-n -перехо­дом могут быть достаточно точно представлены аналитической зависимостью тока I С от напряжений U ЗИ , U СИ и U ЗИ отс :

для крутой области


; (4)

для пологой области


. (5)

Начальный ток стока I С нач и напряжение отсечки U ЗИ отс определяются размерами канала (L и b ) и физическими параметрами полупроводникового кристалла (подвижностью основных носителей, диэлектрической проницаемостью), а также законом распределения примесей в канале.

Статические характеристики передачи. Статическая вольт-амперная характеристика передачи, называемая также стокозатворной, проходной или характеристикой управления полевого транзистора, отображает зависимость I С = f (U ЗИ ) при U СИ = const в режиме перекрытия канала. Следовательно, эта характеристика описывается уравнением (5). Семейство характеристик передачи изображено на рисунке 5.4. Вид характеристики показывает, что при увеличении напряжения U ЗИ , смещающего p-n -переход в обратном направлении, ток стока уменьшается, а при U ЗИ = U ЗИ отс ток стока становится равным нулю. Таким образом характеристика передачи полевого транзистора может быть использована для определения напряжения отсечки.

U ЗИотс

Рисунок 5.4 – семейство передаточных (стокозатворных) характеристик полевого транзистора с управляющим p-n -переходом

5.1.3 МОП-транзисторы с индуцированным каналом

5.1.3.1 Устройство и принцип действия

Упрощенная структура МОП-транзистора с индуцированным каналом n -типа показана на рисунке 5.5. В полупроводнике p -типа, называемом подложкой , методом диффузии образованы две n + -области, не имеющие между собой электрического соединения. Одна из них называется стоком , другая – истоком . Эти области отделены друг от друга двумя включенными встречно p-n -переходами, образованными на границах n + - и p- областей. Поэтому если между стоком и истоком включить источник постоянного напряжения U СИ , то в цепи потечет очень малый ток, обусловленный обратным током p-n -переходов.

Рисунок 5.5 – структура МОП-транзистора с индуцированным каналом n -типа

Если к металлическому затвору приложить положительное напряжение относительно подложки, то под действием электрического поля начнется оттеснение дырок от поверхности полупроводника, расположенной напротив затвора, в глубину полупроводника. В результате этого концентрация дырок в приповерхностном слое уменьшается, а концентрация электронов увеличивается. При некотором значении внешнего напряжения на затворе концентрация электронов в этом слое может оказаться больше, чем концентрация дырок. Произойдет инверсия типа электропроводности. Слой с инверсной электронной электропроводностью, отделенный от полупроводника p -типа областью, обедненной свободными носителями заряда, соединяет n + - области стока и истока, т. е. служит каналом.

Если между стоком и истоком включить внешний источник напряжения U СИ , то при некотором значении напряжения на затворе, которое называется пороговым (U ЗИ пор ), в цепи сток – исток пойдет электрический ток. В канале транзистора этот ток обусловлен движением электронов. Так как электроны должны двигаться от истока к стоку, источник внешнего напряжения U СИ следует подключать положительным полюсом к стоку, а отрицательным – к истоку. Из-за падения напряжения на канале при прохождении по нему тока поперечное электрическое поле вблизи истока оказывается больше, чем вблизи стока, вследствие чего концентрация электронов в канале у истока больше, чем у стока. При увеличении положительного напряжения на затворе концентрация электронов в инверсном слое в будет увеличиваться. Это приведет к увеличению электропроводности канала и к росту тока стока. Режим работы полевого транзистора, при котором увеличение абсолютного значения напряжения на затворе приводит к увеличению тока стока, называется режимом обогащения . Следовательно, МОП-транзисторы с индуцированным каналом могут работать только в режиме обогащения и поэтому их иногда называют полевыми транзисторами обогащенного типа .

На рисунке 5.6 даны условные графические обозначения МОП-транзисто­ров с индуцированным каналом.

Рисунок 5.6 Условное графическое обозначение МОП-транзистора с индуцированным каналом n -типа (а) и p -типа (б)

5.1.3.2 Статические характеристики МОП-транзисторов с индуцированным каналом

На рисунке 5.7 показаны статические выходные (стоковые) характеристики МДП-транзи­стора с индуцированным каналом n -типа. Эти характеристики снимаются при напряжениях на затворе, превышающих пороговое напряжение.

Рисунок 5.7 – Выходные (стоковые) характеристики МДП-транзистора с индуцированным каналом n -типа

Если бы с ростом напряжения U СИ концентрация электронов в индуцированном канала не изменялась, его сопротивление оставалось бы постоянным, а зависимость I C = f (U СИ) – линейной. Но вследствие протекания тока стока происходит падение напряжения вдоль канала, поэтому напряжение затвор-подложка уменьшается при движении от истока к стоку. Это приводит к тому, что концентрация электронов в канале у стока оказывается меньшей, чем у истока, и сопротивление канала растет с ростом напряжения U СИ. При некотором значении напряжения U СИ = U ЗИ – U ЗИпор , называемом напряжением насыщения, напряжение между затвором и подложкой вблизи стока становится меньше порогового, вследствие чего концентрация электронов в канале у стока становится равной нулю – происходит перекрытие канала и ограничение тока стока, как в транзисторах с управляющим p-n -переходом.

При увеличении напряжения U ЗИ стоковые характеристики смещаются вверх. Это обусловлено увеличением концентрации электронов в канале и, как следствие, его электропроводности.

Анализ показывает, что стоковые характеристики МДП-транзисторов описываются следующими аналитическими зависимостями:

в крутой области

в пологой области

Здесь – коэффициент (А/В) 2 , именуемый удельной крутизной. Как видно из формулы, она зависит от длины и ширины канала, материала диэлектрика и его толщины, а также от подвижности носителей в канале..

Статические характеристики передачи, или стокозатворные характеристики МОП-транзи­стора с индуцированным каналом, выражают зависимость I C = f (U ЗИ) при U СИ = const. Эти характеристики (рисунок 5.8) обычно приводятся для режима насыщения и описываются уравнением (7).

Рисунок 5.8 – Передаточные (стокозатворные) характеристики МОП-тран­зистора с индуцированным каналом n -типа.

5.1.4 МОП-транзисторы со встроенным каналом

5.1.4.1 Устройство и принцип действия

Рисунок 5.9 – структура МОП-транзистора со встроенным каналом n -типа

В МОП-транзисторах со встроенным каналом на стадии их изготовления между областями стока и истока технологическим путем создается тонкий приповерхностный слой (канал) с та­ким же типом электропроводности, что и электропроводность областей стока и истока (рисунок 5.9). Поэтому в таких транзисторах при нулевом напряжении на затворе включение источника постоянного напряжения между стоком и истоком сопровождается прохождением через канал некоторого тока, называемого начальным током стока. Увеличение положительного напряже­ния на затворе МДП-транзистора со встроенным каналом n -типа приводит к увеличению кон­центрации электронов в канале и увеличению тока стока. При подаче на затвор такого транзи­стора отрицательного напряжения происходит отток электронов в глубину полупроводника, концентрация электронов в канале и его электропроводность уменьшаются, что приводит к уменьшению тока стока. При некотором отрицательном напряжении на затворе, называемом напряжением отсечки (U ЗИ отс ) произойдет инверсия типа электропроводности канала, и n -об­ласти стока и истока окажутся разделенными областью полупроводника p -типа. Ток стока уменьшится до значения, определяемого обратным током p-n -перехода.

Режим работы полевого транзистора, при котором увеличение по абсолютной величине напряжения на затворе приводит к уменьшению тока стока, называется режимом обеднения . Следовательно, МОП-транзисторы со встроенным каналом могут работать как в режиме обогащения, так и в режиме обеднения и называются полевыми транзисторами обедненного типа .

На рисунке 5.10 даны условные графические обозначения МОП-транзисто­ров со встроенным каналом.

Рисунок 5.10 Условное графическое обозначение МОП-транзистора со встроенным каналом n -типа (а) и p -типа (б)

5.1.4.2 Статические характеристики МОП-транзисторов со встроенным каналом

Режим обогащения

Режим обеднения

Рисунок 5.11 – Выходные (стоковые) характеристики МДП-транзистора со встроенным каналом n -типа

Выходные (стоковые) статические характеристики МОП-транзисторов со встроенным каналом отличаются от аналогичных характеристик МОП-транзисто­ров с индуцированным каналом тем, что содержат характеристики, снятые как при отрицательных, так и при положительных напряжениях на затворе (рисунок 5.11). На характеристиках заметно выражены две области: крутая, соответствующая неперекрытому каналу, и пологая, соответствующая перекрытому каналу, или режиму насыщения тока стока. Наклон характеристик и сопротивление канала транзистора в крутой области определяются напряжением на затворе. Ток стока в МДП-транзисторах со встроенным каналом связан с напряжениями U СИ , U ЗИ , U ЗИ отс такими же аналитическими зависимостями (4) и (5), как в полевых транзисторах с управляющим p-n -переходом.

передаточные (стокозатворные) характеристики МОП-транзистора со встроенным каналом отличаются от аналогичных характеристик полевых транзисторов других типов тем, что имеют участки при положительных и отрицательных напряжениях на затворе. На рисунке 5.10 показаны передаточные характеристики МОП-транзистора со встроенным каналом n -типа. Увеличение положительного напряжения на затворе приводит к увеличению концентрации электронов в канале и увеличению тока стока, а увеличение отрицательного напряжения на затворе сопровождается уменьшением концентрации и снижением тока стока. При U ЗИ = U ЗИ отс транзистор запирается и I С = 0. Аналитическая зависимость тока стока от напряжений U ЗИ и U ЗИ отс в МОП-транзисторах со встроенным каналом определяется выражением (5).

Режим обеднения Режим обогащения

U ЗИотс


Рисунок 5.12 – Передаточные (стокозатворные) характеристики МДП-транзистора со встроенным каналом n -типа

5.1.5 Полевой транзистор как линейный четырехполюсник. Дифференциальные параметры полевых транзисторов

В режимах работы с малыми амплитудами сигнала ПТ любого типа, как и биполярный транзистор, можно представить в виде линейного четырехполюс­ника. Из-за высокого входного сопротивления полевых транзисторов наиболее подходящей как с позиций измерений, так и использования является система y -параметров. В этой системе токи затвора и стока рассматриваются как функции напряжений U ЗИ и U СИ :

I З = f (U ЗИ, U СИ); I С = f (U ЗИ, U СИ).

Уравнения четырехполюсника имеют вид:

Если заменить малые комплексные амплитуды бесконечно малыми приращениями, то из этих формул можно получить выражения для полных дифференциалов токов:



; (8)



. (9)

Частные производные в уравнениях (8) и (9) являются дифференциальными g -парамет­рами полевого транзистора; g -параметры – это вещественные части соответствующих y -параметров.

5.1.5.1. Проводимость прямой передачи или крутизна стокозатворной характеристики



U СИ = const.

Она показывает, на сколько миллиампер (ампер) изменяется ток стока, если при постоянном U СИ напряжение на затворе меняется на 1В. Крутизна позволяет сравнить транзисторы по их управляющим свойствам. Значения S лежат в пределах от 0,5 мА/В до нескольких ампер на вольт и в значительной мере определяются отношением ширины канала b к его длине l (с ростом b/l крутизна растет) и подвижностью носителей заряда. Так как подвижность электронов больше подвижности дырок, то при одинаковых размерах и разности напряжений U ЗИ – U пор крутизна n -канальных транзисторов выше, чем p -канальных.

В МОП-транзисторах для повышения крутизны необходимо уменьшать толщину подзатворного диэлектрика.

5.1.5.2. Выходная проводимость


U ЗИ = const.

Наиболее часто используется не выходная проводимость, а выходное (внутреннее) сопротивление


R i = 1 /g 22 и =

U ЗИ = const.

Внутреннее сопротивление составляет от нескольких десятков до сотен килоом.

5.1.5.3. Статический коэффициент усиления по напряжению



.

I С = const

Он показывает, во сколько раз изменение напряжения на затворе больше влияет на ток стока, чем изменение напряжения на стоке. Значение μ у может достигать нескольких сотен.

Дифференциальные параметры можно определить по статическим характеристикам транзистора (рисунки 8 и 9), используя формулы:

; ; .

U СИ = const U ЗИ = const

Поскольку характеристики полевых транзисторов нелинейны, значения дифференциальных параметров зависят от положения выбранной рабочей точки (режима по постоянному току), т. е. значений напряжений U СИ и U ЗИ .

5.2 Цель работы

Научиться определять статические и дифференциальные параметры ПТ.

5.3 Задачи

Для достижения поставленной цели вам необходимо решить следующие задачи:

– провести измерения и построить статические вольт-амперные характеристики (ВАХ) МОП-тразистора или ПТ с управляющим p-n-переходом (по заданию преподавателя);

– определить статические параметры ПТ;

5.4 Порядок работы и методы решения задач

5.4.1 Из справочника /1/ выпишите кратко основные электрические параметры исследуемого ПТ, выполните эскиз внешнего вида со схемой расположения выводов, зарисуйте условное графическое обозначение /5/, расшифруйте маркировку ПТ.

Изобразите схему включения ПТ с общим истоком в активном режиме /2, раздел 6.1/, укажите токи и напряжения во входной и выходной цепях. Дайте эскиз структуры ПТ.

5.4.2 С помощью лабораторного макета, передняя панель которого с элементами управления и контроля режимов ПТ показана на рисунке 6.1, проведите измерения статических выходных и передаточных характеристик ПТ /2, раздел 6.3, 3, разделы 6.1, 6.5/.

Измерение статических ВАХ с помощью лабораторного макета производится по точкам методом вольтметра-амперметра.

Принципиальная электрическая схема измерительного макета приведена на рис. 6.2.

Определите по справочнику /1/ тип проводимости канала исследуемого вами ПТ и переведите ключи измерения полярности напряжения на стоке и затворе в положение, соответствующее его работе в активном режиме (см. рисунок 6.1). Подключите испытуемый ПТ к измерительному блоку.

При измерении выходных ВАХ ПТ необходимо задавать различные напряжения на стоке и измерять соответствующие им токи стока. Напряжение на стоке меняйте от нуля до 10 В.

Выходную характеристику ПТ измерьте четыре раза при постоянных напряжениях на затворе U зи = 0; 0,25; 0,5 и 1,0 В.

При измерении передаточной характеристики ПТ необходимо задавать различные напряжения на затворе и измерять соответствующие им значения тока стока при условии постоянства напряжения между стоком и истоком.

Напряжение на затворе меняйте от нуля до значений, при которых I с » 0.

Передаточную характеристику измерьте четыре раза при постоянных напряжениях на стоке U си = 0,5; 1,0; 5,0 и 10 В.

5.4.3 Используя результаты полученных измерений, постройте семейства выходных и передаточных характеристик ПТ.

5.4.4 По статическим ВАХ ПТ определите его статические параметры и укажите их на графиках /3, разделы 6,1 и 6.5; 4/:

– начальный ток стока I с нач при U СИ = 10 В;

– напряжение отсечки U зи отс или пороговое напряжение U ЗИ пор (в зависимости от типа транзистора) при I С = 0,01 мА;

– напряжение насыщения U си нас при U зи = 0; 0,25; 0,5 и 1,0 В.

На основе построенных статических ВАХ ПТ рассчитайте его дифференциальные параметры /2, раздел 6.5; 4/ методом графического дифференцирования:

– активную составляющую g 22и полной выходной проводимости ПТ при U си = 10 В; U зи = 0;

– крутизну характеристики S при U зи = 0 и при напряжениях U си = 0,5; 1,0; 5,0 и 10 В;

– коэффициент усиления m при U з и = 0 и U си = 10 В.

Постройте зависимость крутизны S от напряжения U си .

При расчете дифференциальных параметров ПТ методом графического дифференцирования величины приращений токов и напряжений на электродах ПТ необходимо выбирать такими, чтобы в пределах этих приращений участок статической ВАХ ПТ оставался линейным.

Отчет о работе должен содержать результаты измерений и вычислений по всем пунктам задания.

Для успешной защиты выполненной работы вы должны знать принцип работы ПТ с управляющим p-n-переходом, его основные статические и дифференциальные параметры, уметь их определять, уметь пояснить ход статических ВАХ, сравнить с другими типами усилительных приборов.


Рисунок 5.13 – Лицевая панель измерителя статических характеристик полевых транзисторов


Рисунок 5.14 – принципиальная электрическая схема измерителя статических характеристик полевых транзисторов

Литература

1 Аксенов А. И. Отечественные полупроводниковые приборы. Транзисторы биполярные. Диоды. Варикапы. Стабилитроны и стабисторы. Тиристоры. Оптоэлектронные приборы. Аналоги отечественных и зарубежных приборов: Справ. изд. – 6-е изд., доп. и испр. – М.: Солон-Пресс, 2008.–589 с.: ил.

2 Шишкин Г. Г. Электроника: Учеб. для вузов / Г. Г. Шишкин, А. Г. Шишкин. – М. : Дрофа, 2009. – 703 с. : ил.

3 Пасынков В. В., Чиркин Л. К. Полупроводниковые приборы: Учеб. пособие. – 8-е изд., испр. – СПб.: Лань, 2006. – 480 с.: ил.

4 ГОСТ 19095-73. Транзисторы полевые. Термины, определения и буквенные обозначения параметров.

5 ГОСТ 2.730-73. Единая система конструкторской документации. Обозначения условные графические в схемах. Приборы полупроводниковые.

Приложение А

(обязательное )

Пример оформления отчета по лабораторной работе

Титульный лист отчета

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Новгородский государственный университет им. Ярослава Мудрого»

Институт электронных и информационных систем

_______________________________________________________________

Кафедра физики твердого тела и микроэлектроники

Термистор

Лабораторная работа по учебной дисциплине

“Электротехника и электроника: электроника” по направлению 210300 – Радиотехника

Преподаватель

Ст. преподаватель КФТТМ

Г.В. Гудков

Студент гр. _________

В.В.Алексеев

“. . .”. . . . . . . . . . 2012 г.

1 Цель работы

Научиться определять основные статические и дифференциальные параметры термистора.

– ознакомиться со справочными данными термистора;

– провести измерения вольтамперной характеристики и зависимости сопротивления от температуры;

3 Определение

Термистор - это полупроводниковый объемный резистор с большим отрицательным температурным коэффициентом сопротивления.

4 Практическая часть

Справочные данные термистора КМТ-17б /1/:

конструкция условное графическое обозначение


Маркировка: КМТ-17б. Кобальто-марганцевый (КМ) терморезистор (Т), тип конструкции 17б (дисковый).

Основные параметры:

– пределы номинального сопротивления R ном = 0,3¸20 кОм;

– максимальная мощность рассеяния Р макс = 500 мВт;

– интервал рабочих температур t = -60¸155 °С;

– температурный коэффициент сопротивления a R > 4,2 %/К;

– коэффициент рассеяния Н = 10 мВт/К;

– коэффициент температурной чувствительности В > 3600 К;

– постоянная времени t = 30 с.


Измерение вольтамперной характеристики и температурной зависимости сопротивления термистора


Рисунок А1 - Принципиальная электрическая схема для измерения

характеристик и параметров терморезисторов

Таблица А1 - Вольтамперная характеристика термистора КМТ-17б



Рисунок А2 Рисунок А3

4.3 Расчет параметров термистора КМТ-17б

Температурный коэффициент сопротивления (рисунок А3):


.

Коэффициент температурной чувствительности:


4.4 Применение термистора

Термисторы применяются в качестве датчиков при измерении и регулировании температуры, измерении мощности на СВЧ, для температурной сигнализации и т.п.

Литература

Пасынков В. В., Чиркин Л. К. Полупроводниковые приборы: Учеб. пособие. – 8-е изд., испр. – СПб.: Лань, 2006. – 480 с.: ил.

Полевые транзисторы - это активные полупроводниковые элементы, в которых управление выходным током осуществляется при помощи изменения электрического поля. В обычных, биполярных, транзисторах управление происходит с помощью входного тока. Полевые транзисторы также называются униполярными, потому что в процессе прохождения электрического тока принимает участие всего один тип носителей. Существует два типа полевых транзисторов: с изолированным затвором (в свою очередь, они делятся на приборы с встроенным и с индукционным каналом) и с управляемым переходом.

Описание и параметры

Полевые транзисторы состоят из истока (источника носителей тока), затвора (управляющего электрода), стока (электрода, в который стекаются носители). Затвор - это вывод полевого полупроводникового прибора, к которому подведено управляющее напряжение. Исток - это электрод, который предназначен для передачи в транзистор от устройства электропитания носителей заряда. Сток - вывод прибора, через который заряд покидает транзистор. Канал полевого транзистора - это область полупроводникового прибора, в которой происходит перемещение носителей заряда. Такие каналы бывают с электронной и дырочной проводимостью. Полевые транзисторы имеют следующие основные параметры:

Входное сопротивление - это отношение приращения разницы потенциалов "затвор - исток" к приращению тока в затворе;

Напряжение отсечки;

Внутренне (выходное) сопротивление элемента - отношение приращения разницы потенциалов "сток - исток" к приращению величины тока в истоке при заданном значении напряжения "затвор - исток";

Крутизна стокозатворной характеристики - отношение приращения величины тока в стоке к приращению разницы потенциалов "затвор - исток" при неизменном значении напряжения "сток - исток".

Ключевой режим работы транзистора

Ключевым считают такой режим работы полупроводникового прибора, при котором транзистор будет или полностью открыт, или полностью закрыт, промежуточные состояния отсутствуют. Мощность, выделяемая в элементе (статический режим), равна произведению протекающего через электроды "сток - исток" тока и разницы потенциалов между этими контактами. В режиме полного открытия (насыщения) полевого транзистора величина сопротивления между электродами "сток - исток" приближается к нулю. Значение мощности потерь в таком состоянии представляет собой произведение нуля на величину тока, и в результате мощность тоже равна нулю. В режиме полного закрытия прибора (режим отсечки) сопротивление между контактами "сток - исток" стремится к бесконечности. Значение мощности потерь в таком состоянии представляет собой произведение значения напряжения на нуль, в результате мощность снова равна нулю. Это в теории, а на практике, когда полупроводниковый полевой транзистор находится в полностью открытом состоянии, в приборе присутствует незначительное значение сопротивления "сток - исток". В закрытом же состоянии по электродам "сток - исток" протекают незначительные токи. В результате значение мощности потерь не равно нулю, но является ничтожно малым. В динамическом (переходном) режиме рабочая точка транзистора пересекает линейную область, значения тока в которой составляет половину максимальной величины тока стока; значение разницы потенциалов "сток - исток" также достигает половины величины максимального напряжения. Получается, что в переходном режиме транзистором выделяется значительная мощность потерь. Но длительность этого процесса намного меньше, чем длительность статического режима. Соответственно, КПД каскада полевого транзистора, находящегося в ключевом режиме, очень высок - 93/98 процентов. Приборы, которые работают в ключевом режиме, широко применяются в силовых преобразовательных устройствах, импульсных источниках, в выходных каскадах передатчиков.

Проверка полевого транзистора

Диагностика полевых приборов достаточно элементарна, понадобится стандартный мультиметр. Для проверки полевого транзистора N-канального типа выставляется измерительный прибор в режим прозвонки. Черным щупом касаемся подложки транзистора (стока), а красным - истока. Прибор покажет падение напряжения (около 500 мВ), значит, транзистор закрыт. После этого касаемся красным щупом затвора и снова возвращаемся на исток, теперь мультиметр покажет 0 мВ, значит, транзистор открыт. Теперь, если черным щупом коснуться затвора и снова вернуться на сток, то транзистор снова закроется. Проверка окончена, элемент исправен. Для проверки P-канального полевого прибора меняем полярность напряжения.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!