Компьютер. Радиоэлектроника. Блоки питания. Справочники. Источники питания. Радиосвязь

Схемы китайских зарядок. Зарядка телефона схемы

Большинство современных сетевых зарядных устройств собрано по простейшей импульсной схеме, на одном высоковольтном транзисторе (рис. 1.18) по схеме блокинг-генератора.

В отличие от более простых схем на понижающем 50-герцевом трансформаторе, трансформатор у импульсных преобразователей той же мощности гораздо меньше по размерам, а значит, меньше размеры, вес и цена всего преобразователя. Кроме того, импульсные преобразователи более безопасны – если у обычного преобразователя при выходе из строя силовых элементов в нагрузку попадает высокое нестабилизированное (а иногда и вообще переменное) напряжение со вторичной обмотки трансформатора, то при любой неисправности импульсника (кроме выхода из строя оптрона обратной связи – но его обычно очень хорошо защищают) на выходе вообще не будет никакого напряжения.

Вот почему батареи в наших телефонах так важны, и из-за этого, хотя они не растут по размеру, как они должны, они эволюционируют более или менее равномерно и добавляют разные характеристики для облегчения пополнения. или как беспроводная зарядка, которая вот-вот «вернется в моду», возможно, с достаточной силой, чтобы стать стандартным. Но знаете ли вы, как это работает?

Беспроводная зарядка или контакт?

Это большой вопрос, который делит тех, кто уже считает его беспроводной как таковой, и тех, кто ждет, чтобы это стало тем, что их мобильные обещания, бремя, которое работает, даже если у нас есть телефон в наших руках. Войдите в конкретную комнату, и мобильный телефон начнет восстанавливать жизненные силы. Что-то, что может произойти в будущем, но это, по крайней мере на данный момент, похоже, выходит за горизонт.

Рис. 1.18. Простая импульсная схема блокинг-генератора

Описание принципа действия и расчета элементов схемы высоковольтного импульсного преобразователя (трансформатор, конденсаторы и прочее) можно прочитать по ссылке http://www.nxp.com/ acrobat/applicationnotes/AN00055.pdf (1 Мб).

Принцип работы устройства

Переменное сетевое напряжение выпрямляется диодом VD1 (хотя иногда щедрые китайцы ставят целых 4 диода, по мостовой схеме), импульс тока при включении ограничивается резистором R1. Здесь желательно поставить резистор мощностью 0,25 Вт – тогда при перегрузке он сгорит, выполнив функцию предохранителя.

В любом случае, беспроводная зарядка должна называться зарядом индукционным или электромагнитным зарядом, потому что так оно и работает. Система очень проста, в пределах сложности ее разработки и исполнения. В принципе, он состоит в создании электромагнитного поля и испускании энергии, и добиться захвата энергии на другом конце. Электромагнитное поле генерируется поддержкой зарядки, а приемником является мобильный телефон.

Прохождение энергии между зарядным устройством и телефоном происходит только тогда, когда они близки. В остальное время электромагнитное поле зарядного устройства остается на удержании. Для достижения этой цели оба имеют электромагнитные индукционные катушки. Подзарядка, подключенная к электрическому току, использует эту катушку для преобразования электричества, получаемого от вилки, в высокочастотный переменный ток и, в свою очередь, генерирует электромагнитное поле, которое остается скрытым, поскольку оно ожидает прибытия другой катушки который может передавать электроэнергию.

Преобразователь собран на транзисторе VT1 по классической обратноходовой схеме. Резистор R2 нужен для запуска генерации при подаче питания, в этой схеме он необязателен, но с ним преобразователь работает чуть стабильнее. Генерация поддерживается благодаря конденсатору С1, включенному в цепь ПОС на обмотке И, частота генерации зависит от его емкости и параметров трансформатора. При отпирании транзистора напряжение на нижних по схеме выводах обмоток I и II отрицательное, на верхних – положительное, положительная полуволна через конденсатор С1 еще сильнее открывает транзистор, амплитуда напряжения в обмотках возрастает.

После того, как первая катушка, зарядное устройство, обнаруживает наличие телефона, совместимого с зарядной системой, посредством индукции, благодаря прерывистому сигналу, который посылает на регулярной основе ожидания ответа, передача энергии через это поле начинается, И именно так энергия идет от зарядного устройства к мобильному телефону без необходимости подключения какого-либо кабеля между ними.

В возрасте 16 лет венгерский Томас Тамас разработал простую систему для производства энергии и зарядки вашего мобильного телефона во время езды на велосипеде. Оборудование было изготовлено из повторно используемых компонентов и стоило менее 15 реалов. Томас взял страницу, чтобы разделить шаг за шагом, и побудить других создавать свои портативные зарядные устройства для ветровой энергии. Аккумулятор старого телефона.

Транзистор лавинообразно открывается. Через некоторое время, по мере заряда конденсатора С1, базовый ток начинает уменьшаться, транзистор начинает закрываться, напряжение на верхнем по схеме выводе обмотки II начинает уменьшаться, через конденсатор С1 базовый ток еще сильнее уменьшается, и транзистор лавинообразно закрывается. Резистор R3 необходим для ограничения базового тока при перегрузках схемы и выбросах в сети переменного тока.

Съемник и резак для проволоки. Первым шагом является удаление пропеллера из вентилятора. После этого необходимо определить два контакта, которые обеспечивают наивысшее напряжение. Каждое из этих устройств имеет три контакта, поэтому третий не будет использоваться. Верните винт назад и создайте мост, как показано на рисунках ниже.

При подключении гаджет уже сможет генерировать четыре вольта и 60 мА, чтобы зарядить небольшую литий-ионную батарею. Для повышения производительности будет создана простая схема, называемая Джоулом-вором. Поместите переключатель между ними и подключите его к выходу из джоулева вора. Таким образом, схема готова к использованию, просто заставьте ее выглядеть лучше.

В это же время амплитудой ЭДС самоиндукции через диод VD4 подзаряжается конденсатор СЗ – поэтому преобразователь и называется обратноходовым. Если поменять местами выводы обмотки III и подзаряжать конденсатор СЗ во время прямого хода, то резко возрастет нагрузка на транзистор VT1 во время прямого хода (он может даже сгореть из-за слишком большого тока), а во время обратного хода ЭДС самоиндукции окажется нерастраченной и выделится на коллекторном переходе транзистора – то есть он может сгореть от перенапряжения.

Накройте весь блок изоляционной лентой. Это заставит вас выглядеть лучше и защищено от воды. У всех нас есть проблема в том, чтобы быть доступными в наши дни, и хотя наши мобильные телефоны все больше способны делать впечатляющее количество вещей, их автономия, как правило, становится все меньше, и поэтому путешествие может быть действительно трудно справиться. Вы когда-нибудь задумывались над тем, как вы можете сделать зарядное устройство для мобильного телефона, чтобы использовать стилусы?

Это связано с тем, что вы ищете, и, очевидно, превратить все мобильные устройства в периферийные устройства, совместимые с прямым подключением к вашему компьютеру. Тем не менее, очень часто эту ссылку сложно выполнить, потому что, возможно, вы путешествуете. И именно в этих ситуациях это решение особенно интересно.

Поэтому при изготовлении устройства нужно строго соблюдать фазировку всех обмоток (если перепутать выводы обмотки II – генератор просто не запустится, так как конденсатор С1 будет, наоборот, срывать генерацию и стабилизировать схему).

Выходное напряжение устройства зависит от количества витков в обмотках II и III и от напряжения стабилизации стабилитрона VD3. Выходное напряжение равно напряжению стабилизации только в том случае, если количество витков в обмотках II и III одинаковое, в противном случае оно будет другое. Во время обратного хода конденсатор С2 подзаряжается через диод VD2, как только он зарядится до примерно -5 В, стабилитрон начнет пропускать ток, отрицательное напряжение на базе транзистора VT1 чуть уменьшит амплитуду импульсов на коллекторе, и выходное напряжение стабилизируется на некотором уровне. Точность стабилизации у этой схемы не очень высока – выходное напряжение гуляет в пределах 15…25% в зависимости от тока нагрузки и качества стабилитрона VD3.

Прежде чем идти дальше и немного по порядку, мы укажем вам непосредственно на таблицу компонентов, где вы найдете всю полезную информацию, чтобы ознакомиться с ней. Контакт 9 используется для подключения компонентов компенсации, которые обеспечивают стабильность регулятора.

Поэтому, если мы хотим получить выходное напряжение 5 В, мы можем рассмотреть любую пару резисторов, отношение которых равно. Очевидно, можно добиться того же результата с меньшими значениями даже на пару порядков. Для реализации схемы на маленькой доске и ожидания маленькой коробки требуется подключение разъема, как показано в таблице.

Альтернативный вариант устройства

Схема более качественного (и более сложного) преобразователя показана на рис. 1.19.

Для выпрямления входного напряжения используются диодный мостик VD1 и конденсатор С1, резистор R1 должен быть мощностью не менее 0,5 Вт, иначе в момент включения, при зарядке конденсатора С1, он может сгореть. Емкость конденсатора С1, в микрофарадах, должна равняться мощности устройства, в ваттах.

Сам преобразователь собран по уже знакомой схеме на транзисторе VT1. В цепь эмиттера включен датчик тока на резисторе R4 –

Рис. 1.19. Электрическая схема более сложного преобразователя

как только протекающий через транзистор ток станет столь большим, что падение напряжения на резисторе превысит 1,5 В (при указанном на схеме сопротивлении – 75 мА), через диод VD3 приоткроется транзистор VT2 и ограничит базовый ток транзистора VT1 так, чтобы его коллекторный ток не превышал указанные выше 75 мА. Несмотря на свою простоту, такая схема защиты довольно эффективна, и преобразователь получается практически вечный даже при коротких замыканиях в нагрузке.

Для защиты транзистора VT1 от выбросов ЭДС самоиндукции в. схему добавлена сглаживающая цепочка VD4-C5-R6. Диод VD4 обязательно должен быть высокочастотным – идеально BYV26C, чуть хуже – UF4004…UF4007 или 1N4936, 1N4937. Если нет таких диодов – цепочку вообще лучше не ставить!

Конденсатор С5 может быть любым, однако он должен выдерживать напряжение 250…350 В. Такую цепочку можно ставить во все аналогичные схемы (если ее там нет), в том числе и в схему по рис. 1.18 – она заметно уменьшит нагрев корпуса ключевого транзистора и значительно «продлит жизнь» всему преобразователю.

Стабилизация выходного напряжения осуществляется с помощью стабилитрона DA1, стоящего на выходе устройства, гальваническая развязка обеспечивается оптроном VOl. Микросхему TL431 можно заменить любым маломощным стабилитроном, выходное напряжение равно его напряжению стабилизации плюс 1,5 В (падение напряжения на светодиоде оптрона VOl); для защиты светодиода от перегрузок добавлен резистор R8 небольшого сопротивления. Как только выходное напряжение станет чуть выше положенного, через стабилитрон потечет ток, светодиод оптрона VOl начнет светиться, его фототранзистор приоткроется, положительное напряжение с конденсатора С4 приоткроет транзистор VT2, который уменьшит амплитуду коллекторного тока транзистора VT1. Нестабильность выходного напряжения у этой схемы меньше, чем у предыдущей, и не превышает 10…20%, также благодаря конденсатору С1 на выходе преобразователя практически отсутствует фон 50 Гц.

Трансформатор в этих схемах лучше использовать промышленный, от любого аналогичного устройства. Но его можно намотать и самому – для выходной мощности 5 Вт (1 А, 5 В) первичная обмотка должна содержать примерно 300 витков проводом диаметром 0,15 мм, обмотка II – 30 витков тем же проводом, обмотка III – 20 витков проводом диаметром 0,65 мм. Обмотку III нужно очень хорошо изолировать от двух первых, желательно намотать ее в отдельной секции (если есть). Сердечник – стандартный для таких трансформаторов, с диэлектрическим зазором 0,1 мм. В крайнем случае можно использовать кольцо внешним диаметром примерно 20 мм.

Большинство современных сетевых зарядных устройств собрано по простейшей импульсной схеме, на одном высоковольтном транзисторе (рис. 1) по схеме блокинг-генератора.
В отличие от более простых схем на понижающем 50 Гц трансформаторе, трансформатор у импульсных преобразователей той же мощности гораздо меньше по размерам, а значит, меньше размеры, вес и цена всего преобразователя. Кроме того, импульсные преобразователи более безопасны - если у обычного преобразователя при выходе из строя силовых элементов в нагрузку попадает высокое нестабилизированное (а иногда и вообще переменное) напряжение со вторичной обмотки трансформатора, то при любой неисправности «импульсника» (кроме выхода из строя оптрона обратной связи - но его обычно очень хорошо защищают) на выходе вообще не будет никакого напряжения.


Рис. 1
Простая импульсная схема блокинг-генератора


Подробнейшее описание принципа действия (с картинками) и расчета элементов схемы высоковольтного импульсного преобразователя (трансформатор, конденсаторы и пр.) можно прочитать, например, в «ТЕА152х Efficient Low Power Voltage supply» по ссылке http://www. nxp.com/acrobat/applicationnotes/AN00055.pdf (на английском).
Переменное сетевое напряжение выпрямляется диодом VD1 (хотя иногда щедрые китайцы ставят целых четыре диода, по мостовой схеме), импульс тока при включении ограничивается резистором R1. Здесь желательно поставить резистор мощностью 0,25 Вт - тогда при перегрузке он сгорит, выполнив функцию предохранителя.
Преобразователь собран на транзисторе VT1 по классической обратноходовой схеме. Резистор R2 нужен для запуска генерации при подаче питания, в этой схеме он необязателен, но с ним преобразователь работает чуть стабильней. Генерации поддерживается благодаря конденсатору С1, включенному в цепь ПОС на обмотке частота генерации зависит от его емкости и параметров трансформатора. При отпирании транзистора напряжение на нижних по схеме выводах обмоток / и II отрицательное, на верхних - положительное, положительная полуволна через конденсатор С1 еще сильней открывает транзистор, амплитуда напряжения в обмотках возрастает... То есть транзистор лавинообразно открывается. Через некоторое время, по мере заряда конденсатора С1, базовый ток начинает уменьшаться, транзистор начинает закрываться, напряжение на верхнем по схеме выводе обмотки II начинает уменьшаться, через конденсатор С1 базовый ток еще сильней уменьшается, и транзистор лавинообразно закрывается. Резистор R3 необходим для ограничения базового тока при перегрузках схемы и выбросах в сети переменного тока.
В это же время амплитудой ЭДС самоиндукции через диод VD4 подзаряжается конденсатор СЗ - поэтому преобразователь и называется обратноходовым. Если поменять местами выводы обмотки III и подзаряжать конденсатор СЗ во время прямого хода, то резко возрастет нагрузка на транзистор во время прямого хода (он может даже сгореть из-за слишком большого тока), а во время обратного хода ЭДС самоиндукции окажется нерастраченной и выделится на коллекторном переходе транзистора - то есть он может сгореть от перенапряжения. Поэтому при изготовлении устройства нужно строго соблюдать фазировку всех обмоток (если перепутать выводы обмотки II - генератор просто не запустится, так как конденсатор С1 будет наоборот, срывать генерацию и стабилизировать схему).
Выходное напряжение устройства зависит от количества витков в обмотках II и III и от напряжения стабилизации стабилитрона VD3. Выходное напряжение равно напряжению стабилизации только в том случае, если количество витков в обмотках II и III одинаковое, в противном случае оно будет другое. Во время обратного хода конденсатор С2 подзаряжается через диод VD2, как только он зарядится до примерно -5 В, стабилитрон начнет пропускать ток, отрицательное напряжение на базе транзистора VT1 чуть уменьшит амплитуду импульсов на коллекторе, и выходное напряжение стабилизируется на некотором уровне. Точность стабилизации у этой схемы не очень высока - выходное напряжение гуляет в пределах 15...25% в зависимости от тока нагрузки и качества стабилитрона VD3.
Схема более качественного (и более сложного) преобразователя показана на рис. 2


Рис. 2
Электрическая схема более сложного
преобразователя


Для выпрямления входного напряжения используется диодный мостик VD1 и конденсатор, резистор должен быть мощностью не менее 0,5 Вт, иначе в момент включения, при зарядке конденсатора С1, он может сгореть. Емкость конденсатора С1 в микрофарадах должна равняться мощности устройства в ваттах.
Сам преобразователь собран по уже знакомой схеме на транзисторе VT1. В цепь эмиттера включен датчик тока на резисторе R4 - как только протекающий через транзистор ток станет столь большим, что падение напряжения на резисторе превысит 1,5 В (при указанном на схеме сопротивлении - 75 мА), через диод VD3 приоткроется транзистор VT2 и ограничит базовый ток транзистора VT1 так, чтобы его коллекторный ток не превышал указанные выше 75 мА. Несмотря на свою простоту, такая схема защиты довольно эффективна, и преобразователь получается практически вечный даже при коротких замыканиях в нагрузке.
Для защиты транзистора VT1 от выбросов ЭДС самоиндукции, в схему добавлена сглаживающая цепочка VD4-C5-R6. Диод VD4 обязательно должен быть высокочастотным - идеально BYV26C, чуть хуже - UF4004-UF4007 или 1 N4936, 1 N4937. Если нет таких диодов, цепочку вообще лучше не ставить!
Конденсатор С5 может быть любым, однако он должен выдерживать напряжение 250...350 В. Такую цепочку можно ставить во все аналогичные схемы (если ее там нет), в том числе и в схему по рис. 1 - она заметно уменьшит нагрев корпуса ключевого транзистора и значительно «продлит жизнь» всему преобразователю.
Стабилизация выходного напряжения осуществляется с помощью стабилитрона DA1, стоящего на выходе устройства, гальваническая развязка обеспечивается оптроном V01. Микросхему TL431 можно заменить любым маломощным стабилитроном, выходное напряжение равно его напряжению стабилизации плюс 1,5 В (падение напряжения на светодиоде оптрона V01)’, для защиты светодиода от перегрузок добавлен резистор R8 небольшого сопротивления. Как только выходное напряжение станет чуть выше положенного, через стабилитрон потечет ток, светодиод оптрона начнет светиться, его фототранзистор приоткроется, положительное напряжение с конденсатора С4 приоткроет транзистор VT2, который уменьшит амплитуду коллекторного тока транзистора VT1. Нестабильность выходного напряжения у этой схемы меньше, чем у предыдущей, и не превышает 10...20%, также, благодаря конденсатору С1, на выходе преобразователя практически отсутствует фон 50 Гц.
Трансформатор в этих схемах лучше использовать промышленный, от любого аналогичного устройства. Но его можно намотать и самому - для выходной мощности 5 Вт (1 А, 5 В) первичная обмотка должна содержать примерно 300 витков проводом диаметром 0,15 мм, обмотка II - 30 витков тем же проводом, обмотка III - 20 витков проводом диаметром 0,65 мм. Обмотку III нужно очень хорошо изолировать от двух первых, желательно намотать ее в отдельной секции (если есть). Сердечник - стандартный для таких трансформаторов, с диэлектрическим зазором 0,1 мм. В крайнем случае, можно использовать кольцо внешним диаметром примерно 20 мм.
Скачать: Основные схемы импульсных сетевых адаптеров для зарядки телефонов
В случае обнаружения "битых" ссылок - Вы можете оставить комментарий, и ссылки будут восстановлены в ближайшее время.
Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!