Компьютер. Радиоэлектроника. Блоки питания. Справочники. Источники питания. Радиосвязь

Дроссель переменного тока применение. Устройство дросселя, принцип работы и назначение

Дроссель (в переводе с немецкого – «сокращать») – это одна из разновидностей катушек индуктивности. Главное предназначение этого элемента электрической схемы – «задерживать» (снижать на определенный период времени) влияние токов определенного диапазона частот. При этом резко изменить силу тока в катушке практически нереально – здесь вступает в силу закон самоиндукции, благодаря которому на выходе формируется дополнительное напряжение.

Дроссель необходим в электрической цепи в том случае, когда необходимо подавить переменную составляющую тока (например, помехи), существенно снизить пульсации в сети , а также ограничить или разделить в соответствии с поставленной задачей различные частотные сигналы (изоляция или развязка).

В электро – и радиотехнике применяется переменный в диапазоне от единиц до сотен миллиардов Гц. (1 – это одно колебание в секунду). Условно такие широкие границы подразделяются на несколько участков:

Низкие (звуковые) частоты (20 Гц – 20 кГц);

Ультразвуковые частоты (20 – 100 кГц);

Высокие и сверхвысокие частоты (от 100 кГц и выше).

Конструктивно низкочастотный дроссель очень напоминает обычный электрический трансформатор , только всего с одной обмоткой. Последняя представляет собой витки изолированного провода, навитого на стальной сердечник, набранный из изолированных пластин (чтобы избежать возникновение токов Фуко), и обладает большой индуктивностью. Такая катушка характеризуется сильным противодействием любым изменениям тока в цепи: поддерживает его при убывании, и сдерживает при резком нарастании.

Также дроссели широко используются и при реализации различных высокочастотных электрических схем. В данном случае их исполнение может быть одно – или многослойным, при этом часто сердечники (как стальные, так и ферромагнитные) не используются. Иногда в качестве основы для навивки применяют обычные резисторы или пластмассовые каркасы. В диапазоне длинных и средних волн для обеспечения заданных параметров используется также специальная секционная намотка провода.

Применение магнитных сердечников позволяет существенно уменьшить габариты дросселей при тех же заявленных параметрах индуктивности. На высоких частотах используются ферритовые и магнитодиэлектрические составы, позволяющие, благодаря небольшой собственной емкости, использовать их в широком диапазоне.



Главная техническая характеристика дросселя – индуктивность,(которая измеряется в генри (Гн), сопротивление постоянному току, допустимое изменение напряжения, номинальный подмагничивания, а также добротность. Последний показатель широко используется при расчетах колебательных контуров.

По своему назначению такой вид катушек индуктивности можно подразделить на следующие виды:

Переменного тока. Используются для токоограничения в сети; например, во время пуска электродвигателя или импульсных ИВЭП.

Насыщения. Главное область применения – стабилизаторы напряжения.

Сглаживающие. Предназначены для ослабления пульсаций уже выпрямленного тока.

Магнитные усилители (МУ). Представляют собой катушки индуктивности, сердечник которой подмагничивается за счет постоянного тока. Меняя параметры последнего, можно изменять индуктивное сопротивление.

Существуют также трехфазные дроссели для использования в соответствующих цепях.

Сегодня разнообразные типы дросселей нашли широкое применение для решения разнообразных инженерных задач.

Что такое дроссель и для чего он нужен. Drossel - это немецкое слово, которое обозначает сглаживание. Конкретно будем говорить об электрическом дросселе. Сейчас трудно найти электрическую схему в которой нет данного устройства, которое даже в цифровой век широко используется в технике. Он нужен для регулирования либо отсекания, в зависимости от назначения - сглаживать резкие скачки тока или отсекать электрические сигналы другой частоты, постоянный ток отделять от переменного.

Конструкция и принцип работы

Прежде всего поговорим о том, из чего состоит данный элемент цепи и как он работает. На схемах обозначение дросселя следующее:

Внешний вид изделия может быть таким, как на фото:


Это катушка из провода намотанного на сердечник с магнитопроводом, или без корпуса в случае высоких частот. Похож на трансформатор только с одной обмоткой. Краткий экскурс в физику, ток в катушке не может мгновенно измениться. Проведем мысленный эксперимент - у нас есть источник переменного тока, осциллограф, дроссель.

Во время начала полу волны мы наблюдаем нарастание тока с запозданием, это вызвано индуцированием магнитного потока в сердечнике. Происходит постепенное нарастание тока в обмотках, когда с источника переменного тока сигнал уходит на спад, мы наблюдаем спад тока в дросселе, опять же с некоторым опозданием, поскольку магнитное поле в магнитопроводе продолжает толкать ток в катушке и не может быстро изменить свое направление. Получается в какой-то момент ток из внешнего источника противодействует току, наведенному магнитопроводом дросселя. В цепях переменного тока назначение дросселя - выступать ограничителем или индуктивным сопротивлением.

Для постоянного тока данный элемент схемы не является сопротивлением или регулирующим элементом. Этот эффект используют для устройств, в электрических цепях, где нужно ограничить ток до нужной величины, при этом избежать излишней громоздкости и выделения тепла.

Интересное пояснение по данному вопросу вы также можете просмотреть на видео:

Наглядное сравнение, объясняющее принцип работы

Теоретическая часть вопроса

Область применения

Дроссель предназначен для того, чтобы сделать нашу жизнь светлее. Конкретно в люминесцентных лампах он ограничивает ток через колбу, до нужной величины, избегая его чрезмерное увеличение через лампу.


Люминесцентный светильник в основном состоит из дросселя, стартера, люминесцентной лампы. В двух словах описание работы люминесцентного светильника происходит так:

Из сети ток через дроссель проходит на одну из нитей накала люминесцентной лампы, далее попадает на стартерное устройство, далее на вторую нить накала и уходит в сеть. В стартерном устройстве пластина из биметалла нагревается тлеющим разрядом газа, выпрямляется под действием тепла и замыкает цепь. В этот момент начинают работать нити накала, на концах лампочки, разогревая пары ртути в колбе люминесцентной лампы. Через короткий промежуток времени, пластина в стартере остывает и возвращается в исходное положение. Во время разрыва цепи происходит резкий всплеск напряжения в дросселе, происходит пробой газа в колбе люминесцентной лампы, и возникает тлеющий разряд, лампочка начинает светить, работающая лампа шунтирует стартер, выключая его из цепи более низким сопротивлением.

В электронных схемах современных экономических люминесцентных ламп тоже есть рассматриваемый в статье элемент, но из-за более высоких частот он имеет миниатюрные размеры. А принцип работы и назначение остались те же.


Также дроссель обязательный элемент в схемах ламп ДРЛ, металлогалогеновых лампочек CDM.


В импульсных блоках питания в схемах преобразователях назначение дросселя - блокировать резкие всплески от трансформатора, пропуская сглаженное напряжение. Грубо говоря в этом случае он играет роль фильтра.

В электрических сетях они также устанавливаются, но называются реакторами. Назначение дугогасительного реактора - предотвращать появление самостоятельной дуги во время однофазного короткого замыкания на землю, также как и прочих реакторов, которые так или иначе регулируют или же ограничивают величину тока через них, специально или в случае нештатной ситуации.

С помощью дросселя можно улучшить дешевый или , установив его во вторичную цепь. Сварочный трансформатор собранный с дросселем будет варить не хуже фирменных аппаратов, дуга станет ровной и не будет рваться, шов будет равномерно залит.


Необходимым элементом DC-DC преобразователя является дроссель .

Цель данного раздела, не выходя за пределы школьного курса физики, дать методику расчета наиболее распространенного дросселя - дросселя, работающего с подмагничиванием. Для начала считаем, что в обмотке дросселя течет постоянный ток с незначительной пульсацией.

Обмотка дросселя обычно полностью занимает окно сердечника. Поэтому, зная величину тока I и плотность тока J (А/мм2) в обмотке, а также площадь окна сердечника S o (см2) и коэффициент его заполнения К o , можно определить максимальное количество витков , которое можно разместить в окне сердечника:

Потокосцепление обмотки дросселя можно определить, если известны витки, максимальная индукция В m (Тл), Сечение сердечника S c (см2) и его коэффициент заполнения К m:

Подставив (18.10) в (18.11), получим:

Известно, что

Из (18.12) и (18.13) найдем индуктивность дросселя :

Из формулы индуктивности легко получить габаритные размеры сердечника, которые позволят получить требуемую индуктивность дросселя :

Для выбора значений В, J, К c , К o можно использовать рекомендации табл. 18.5. При этом габаритную мощность Р габ можно приравнять к 1,25 S c S c .

Для алюминиевого провода плотность тока следует уменьшить в 1,6 раза.

Внимание! Во избежание насыщения сердечник дросселя должен иметь немагнитный зазор.

Считаем, что по сравнению с немагнитным зазором, сердечник дросселя является идеальным магнитным проводником и все ампервитки обмотки приложены к немагнитному зазору. Благодаря длинному немагнитному зазору, индукция в сердечнике изменяется практически от нуля до В m .

Длину немагнитного зазора при известных ампервитках можно определить по формуле:

Из (18.10), (18.13) и (18.17) выведем формулу для нахождения индуктивности дросселя :

Часто мы видим, что дроссели со стальным сердечником используются в инверторных источниках на более высокой частоте, чем, казалось бы, для них допустимо. Этому можно найти разумное объяснение.

Потери в стальном сердечнике трансформатора определяются по формуле:

где Р c - потери в сердечнике; Р уд - удельные потери для данного материала при заданных значениях максимальной индукции В у и частоты f у синусоидальной магнитной индукции; G с - масса сердечника; В m - максимальная индукция в сердечнике; α и β - частотные показатели.

В трансформаторе размах индукции достигает удвоенного значение максимальной индукции В m (индукция меняется от -В m до +B m). А в дросселе, даже в режиме разрывных токов, размах не превышает значения В m (индукция меняется от 0 до В m). Значит, для дросселя формулу можно переписать в следующем виде:

Δ B - размах индукции в сердечнике дросселя.

Из формулы следует, что потери в сердечнике возрастают вместе с увеличением размаха индукции Δ B и с увеличением рабочей частоты f. Однако, если, увеличив частоту, мы уменьшим размах индукции, то потери не увеличатся.

Отсюда можно определить максимальный размах индукции для более высокой рабочей частоты:


Рассмотрим практические примеры расчета дросселя.

Пример расчета дросселя № 1

Допустим, мы строим регулируемый сварочный источник. Источник питается от однофазной сети 220 В, 50 Гц. Регулировка сварочного тока в пределах от I min = 50 А до I max = 150 А осуществляется при помощи управляемого тиристорного выпрямителя.

Периодичность нагрузки ПН = 40 %. Чтобы сварочная дуга не гасла в паузах напряжения, при минимальном токе и для максимального угла регулирования, необходимо, чтобы ток не падал ниже I ст = 10 А.

Отсюда можно определиться с минимальной индуктивностью дросселя:


Дроссель будем мотать на Ш-образном сердечнике из стали 3411 (Э310).

Предварительно выберем:

  • В = 1,42 Тл;
  • J = 5 А/мм2 (с учетом заданной ПН);
  • К o - 0,35;
  • К c = 0,95.

Найдем габаритный размер сердечника:

Для дросселя можно использовать два сердечника ШЛ40х80 (S c = 32 см2, S o = 40 см2).

Определим количество витков обмотки:

Обмотка выполняется проводом сечением:

Определим результирующую индуктивность:

Пример расчета дросселя № 2

Как говорилось в первом примере, дроссель в основном нужен для поддержания тока в паузах, вызванных работой выпрямителя (управляемого или неуправляемого). В отсутствии паузы в дросселе нет большой необходимости.

Следовательно, можно значительно уменьшить габариты дросселя, если сделать его нелинейным, насыщающимся. Т. е., когда ток в дросселе ниже тока насыщения 1нап дроссель имеет значительную индуктивность, достаточную для поддержания тока в паузах, а когда ток становится больше I нас дроссель отключается, т. к. его сердечник входит в насыщение.

Рассчитаем нелинейный двухобмоточный насыщающийся дроссель для сварочного источника с тиристорным регулятором. Основная первичная обмотка дросселя до насыщения должна иметь индуктивность 0,3 мГн, а дополнительная вторичная обмотка - 7,5 мГн.

Максимальный ток первичной обмотки составляет I 1 = 180 А, а вторичной - I 2 = 13 А. Сердечник дросселя должен войти в насыщение, если ток первичной обмотки превышает I нас = 132 А.

Предварительно считаем, что первичная обмотка дросселя будет мотаться алюминием, а вторичная - медью. Ранее мы определили, что при ПВ = 20% для меди допустима плотность тока J Cu = 8 А/мм2.

Так как алюминий имеет более высокое по сравнению с медью удельное сопротивление, то для него нужно выбирать плотность тока в 1,6 раза меньше, т. е. J Al = 5 А/мм2.

Так как известны индуктивности обмоток дросселя, то коэффициент трансформации дросселя можно найти по формуле:

Выведенные ранее формулы справедливы для однообмоточного дросселя, имеющего минимальную пульсацию тока в обмотках. Чтобы учесть разницу между действующим током и током насыщения, необходимо значение плотности тока J умножить на коэффициент насыщения:

Чтобы выделить место в окне сердечника для дополнительной обмотки, необходимо умножить габарит сердечника на коэффициент:

В качестве сердечника для дросселя выберем Ш-образный ленточный сердечник из стали 3411 (Э310). По модифицированной формуле (18.15) найдем:


Для дросселя можно использовать один сердечник ШЛ32х50 (S c =16 см2, S o = 26 см2, S c S o = 416 см4).

Определим количество витков первичной обмотки по модифицированной формуле (18.10):

Определим количество витков вторичной обмотки:

Первичная обмотка наматывается проводом сечением:

Вторичная обмотка наматывается проводом сечением:

Определим длину немагнитного зазора:

Определим результирующую индуктивность первичной обмотки дросселя:

Индуктивность получилась больше, чем нужно. Для получения требуемой индуктивности уменьшим количество первичной обмотки до Wt = 18. Соответственно, W2 = 90 витков и 5 = 2 мм.

Пример расчета дросселя № 3

Рассчитаем дроссель L2 ЭРСТ. Максимальный ток дросселя - 315 А, минимальный -10 А.

Частота пульсации тока в дросселе соответствует частоте ШИМ и равна F ШИМ = 25000 Гц.

Определим параметры дросселя, необходимые для обеспечения неразрывности сварочного тока. На рис. 18.25 изображена форма тока в дросселе L2, соответствующая границе неразрывности.

Рис. 18.25. Форма тока, соответствующая границе неразрывности

За время открытого состояния ключа ЭРСТ ток в дросселе увеличивается от нуля до амплитудного значения. Далее, за время паузы, ток уменьшается до нуля. Опасность выхода за границы неразрывности существует при минимальном сварочном токе I св min = 10 А и максимальном входном напряжении ЭРСТ. Определим напряжение дуги для минимального сварочного тока:

Определим соотношение между амплитудным и средним значением тока треугольной формы. Среднее значение функции есть интеграл от этой функции или, попросту говоря, - площадь, ограниченная этой функцией и линией нулевого уровня.

Площадь треугольника определяется как произведение высоты треугольника на половину длины основания:

Отсюда найдем связь между средним и амплитудным значением тока:

Если ключ открыт, то к дросселю приложено напряжение:

Ток в дросселе нарастает от 0 до I a .

Во время паузы к дросселю приложено напряжение -U d мин, и ток в нем уменьшается до 0.

Так как изменение тока () в обоих случаях будет иметь одну и ту же величину, но разный знак, то


Допустим, в качестве материала сердечника дросселя мы предполагаем использовать электротехническую сталь с толщиной листа 0,08 мм, которая на частоте f y = 1000 Гц, при индукции B y = 1 Тл и прямоугольной форме напряжения имеет потери P y = 22 Вт/ кг.

Частотные показатели стали α = 1,4 и β = 1,8. Найдем допустимый размах индукции для частоты 25000 Гц, который обеспечит такой же уровень потерь, как и на частоте 1000 Гц:

Предварительно определимся, что индукция в сердечнике для постоянного тока может достигать величины В = 1,42 Тл, плотность тока J = 3,5 А/ мм2, K o = 0,35 и K c = 0,10. Найдем габаритный размер сердечника.

.

Назначение и конструкция дросселей

Что такое дроссель?

Электрический дроссель - устройство, представляющее собой катушку индуктивности и предназначенное для ограничения переменной составляющей электрического тока. Другими словами, если ток в электрической цепи содержит постоянную и переменную составляющие то дроссель, последовательно включенный в эту электрическую цепь, за счёт своей индуктивности и большого сопротивления для переменного тока, значительно его снижает, а на постоянную составляющую тока, влияет минимально, за счёт низкого сопротивления постоянному току.

Рис. 1

Дроссели позволяют запасать электрическую энергию в магнитном поле. Типичное их применение - сглаживающие фильтры и различные селективные цепи. Их электрические характеристики определяются конструкцией, свойствами материала магнитопровода, его конфигурацией и числом витков катушки.
При выборе дросселя следует учитывать следующие характеристики:

  • требуемое значение индуктивности (Гн, мГн, мкГн, нГн);
  • максимальный ток катушки;
  • допуск (величину отклонения от исходного значения) индуктивности;
  • температурный коэффициент индуктивности (ТКИ);
  • активное сопротивление провода катушки дросселя;
  • добротность дросселя, которая определяется на рабочей частоте как отношение индуктивного и активного сопротивлений;
  • частотный диапазон катушки.

В зависимости от диапазона частот технически различаются высокочастотные и низкочастотные дроссели

Высокочастотные дроссели подразделяются на два типа:

  • с постоянным значением индуктивности;
  • с переменным значением индуктивности, за счет подстраиваемого ферромагнитного сердечника.

Первый тип применяется, как правило, во входных цепях телефонных аппаратов, в сглаживающих фильтрах, в цепях питания ВЧ аппаратуры. Второй тип катушек используется в резонансных цепях - ВЧ, трактах приемных и передающих устройств.

В ламповых усилителях звуковой частоты высокочастотные дроссели, применяются крайне редко. Как правило их использование может быть предопределено схемотехникой выходных каскадов, построенных на высокочастотных пентодах большой мощности, предрасположенных к самовозбуждению на радиочастотах.

Конструктивно дроссели высокой частоты выполняются в виде однослойных или многослойных катушек. Конструкции дросселей высокой частоты показаны на рис. 2. Для дросселей длинных (а, б ) и средних (б, в ) волн применяется секционированная многослойная намотка. Дроссели для коротких (г ) волн и для метровых (д ) волн обычно имеют однослойную намотку - сплошную или с принудительным шагом. В качестве каркаса часто используются керамические стержни от сопротивлений ВС-0,5 и ВС-1,0.


Рис. 2

Высокочастотный дроссель можно изготовить самостоятельно, намотав необходимое количество витков, для получения нужной индуктивности на керамический или фторопластовый сердечник. Рассчитать необходимое количество витков можно по формулам, приведенным в разделе

Лучше использовать, выпускаемые промышленностью ВЧ дроссели. Они имеют понятную яркую цветовую маркировку и отличаются высокой добротностью.

Рис. 2

Предназначены для подавления низкочастотной составляющей переменного тока питающей сети и его гармоник. На рисунке 3, представлен низкочастотный дроссель, индуктивностью 3 Гн при токе подмагничивания 120 ma.


Рис. 3 Низкочастотный дроссель промышленного производства

Дроссели лучше, и проще всего использовать заводские, предпочтительнее от старых ламповых телевизоров Темп-6, Темп-6М, Темп-7, Рубин-102, Авангард, Беларусь, или других аналогичных по характеристикам старых телевизоров. Но если стоит задача изготовить ламповый усилитель высокого качества и надёжности своими руками, то дроссель придётся рассчитать, по приведенной ниже методике, и изготовить его самостоятельно. Принципиально новым подходом в современной ламповой схемотехнике, может оказаться требование обязательной настройки дросселей фильтра питания в резонанс на частоту 100 Гц. Это необходимо для повышения эффективности фильтрации выпрямленного напряжения.

Расчет низкочастотного дросселя для анодного источника питания

Дроссель - это важный элемент блока питания лампового усилителя. Совместно с электролитическими конденсаторами, он входит в состав П - образного низкочастотного фильтра и становится незаменимым элементом в цепи анодного питания усилителя класса Hi-End. В зависимости от мощностных характеристик усилителя и его качественных показателей, размеры дросселя могут сильно варьировать и доходить до половины размеров силового трансформатора.

Некоторые параметры , встречающиеся в расчетных формулах:
F - частота, Гц;
S c - площадь сечения сердечника, кв. см;
К с - коэффициент заполнения сердечника сталью;
S ok - площадь сечения окна, кв. см;
К ок - коэффициент заполнения окна медью;
В т - максимальная индукция в сердечнике, Тл;
J - плотность тока в проводах, А/кв. мм.
I - постоянный ток в проводе обмотки дросселя, А.

Главный параметр дросселя - его постоянная времени, отношение индуктивности к сопротивлению обмотки L/R . Чем выше требуется эта величина, тем больше должны быть габариты магнитопровода, чтобы провод нужного диаметра и длины поместился в окне сердечника.

Рассчитывается по уже известной формуле:

При неизменной степени постоянного подмагничивания индук-тивность получается максимальной при определенной длине немаг-нитного зазора lz . От величины этого зазора зависит эквивалентная магнитная проницаемость сердечника:

В присутствии постоянного подмагничивания lz уже не является независимой переменной. Ключевой величиной в расчете дросселей и трансформаторов является степень подмагничивания или количество погонных ампервитков (aw0 ).

Формула связи напряженности магнитного поля с инженерной величиной aw0 , приведена ниже:

Предлагаемый алгоритм расчета основан на экспериментальном графике зависимости магнитной проницаемости от aw0 рисунок 4.


Рис. 4 Экспериментальный график зависимости начальной магнитной проницаемости от aw0

Эти графики соответствуют массовым маркам сталей. Высококачественная сталь имеет в несколько раз большую магнитную проницаемость, однако в большинстве случаев рассчитывать на это не приходится. На графике показана зависимость начальной (т. е. в Отсутствие переменного магнитного поля) магнитной проницаемости от напряженности магнитного поля, выраженного в ампервитках на сантиметр. В системе СИ напряженность измеряется в амперах на метр. Следует помнить, что точки на графике соответствуют разным зазорам. Более высокие напряженности требуют большего зазора. В начале расчета величины aw0 и, соответственно, μ z не известны. Количество витков в обмотках может быть получено методом последовательных приближений по формуле:


Для этого в формулу подставляются параметры трансформатора, требуемая индуктивность и пробная величина μ проб, по полученному количеству витков вычисляется степень подмагничивания aw0 . По графику μ (aw0 ) находится μ z , вместо графиков при машинных расчетах можно использовать аппроксимирующие уравнения:


Для горячекатанной стали



Для холоднокатанной стали


Пробная μ проб корректируется и снова просчитывается количество витков. Эта процедура проделывается несколько раз до тех пор, пока изменение количества витков от просчета к просчету не будет незначительным (несколько процентов). В большинстве случаев достаточно двух-трех проходов. Если новое значение больше старой μ проб , то μ проб следует увеличить так, чтобы она стала немного больше μ z и наоборот. В конце расчета необходимо убедиться, что получившиеся L , N удовлетворяют требованию конструктивной реализуемости. Для этого вычисляется максимальное сечение провода S , которое можно разместить в окне

Плотность тока в медном проводнике обмотки дросселя, рассчитывается по формуле:

Если плотность тока J не превышает обычных 1,5—2 А/кв. мм, то расчет можно считать оконченным, так как не требуется точного соответствия сопротивления оболочки заданному. Количество витков не должно превышать 3500—4000. При необходимости следует выбрать другой типоразмер магнитопровода и повторить расчет. При сборке намотанного дросселя необходимо уложить в зазор немагнитную прокладку нужной толщины. Точное соблюдение и подбор величины зазора необходимо только для выходных трансформаторов. Для дросселей вполне достаточно точности эмпирической формулы, приведенной ниже. Величина зазора рассчитывается в мм:


Намотка катушек дросселей не имеет особенностей. В большинстве случаев (для дросселей блоков питания) нет необходимости даже в межслоевой изоляции. Обмотка обычно находится под высоким потенциалом, поэтому она должна быть хорошо изолирована от сердечника. Пропитка дросселей, как правило, необходима, чтобы избежать гудения. Результаты расчета дросселя на очень распространенном и дешевом сердечнике от выходного трансформатора лампового телевизора Ш 16x25 с размером окна 16 х 40 мм, приведены в таблице №1:

Таблица №1

Sc 4 kb. cm
Sok 3,84 kb. cm
Lc 10,6 cm
L0 12,84 cm
Kok 0,34
I0 120 mA
aw 29,4
μz 171,8
N 2600 вит
L 5,51 Гн
D 0,25 мм
R 116,3 0м
P 1,67 Вт
lz 0,25 мм
Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!